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Abstract

This thesis addresses problems in the field of cooperative control and estimation of

multi-agent systems (MAS) under stringent communication constraints that include: i)

Consensus-synchronization of multi general nonlinear agent system, ii) Cooperative path

following (CPF) of multiple constrained autonomous vehicles, and iii) and Range-based co-

operative simultaneous target localization and pursuit (SLAP) with multiple autonomous

vehicles. Due to the communication constraints imposed by the topology of the inter-

agent communication network, where each agent (vehicle) is only capable of exchanging

information with a subset of agents in the network, the problems must be addressed in a

distributed manner.

To address the first problem, we propose a distributed control strategy with an event-

triggered communication (ETC) framework that aims at reducing communications among

the agents. The framework possess two important properties: i) practical consensus stabi-

lization, that is, the synchronization error that measures the disagreement among agents’

states converges to a ball centered at the origin, with a radius that can be made arbitrar-

ily small and ii) the minimum of the inter-event times for each agent is strictly positive,

hence Zeno behavior is excluded.

The CPF problem is defined as steering a group of constrained autonomous vehicles along

given spatial paths while holding a desired inter-vehicle formation pattern. The solution

proposed involves decoupling the original CPF problem into two sub-problems: i) single

path following of input-constrained vehicles and ii) coordination of an input-constrained

multi-agent system (MAS). The first is solved by adopting a sampled-data model predic-

tive control (MPC) scheme, whereas the latter is tackled using a novel distributed control

law with an (ETC) mechanism. The proposed strategy yields a closed-loop CPF system

that is input-to-state-stable (ISS) with respect to the system’s state (consisting of the

path following error of all vehicles and their coordination errors) and the system’s input,

which includes triggering thresholds for ETC communications and communication delays.

In order to solve the problem of cooperative target localization and pursuit, we first derive

conditions on the motion of the vehicles, called as trackers, under which the target’s state
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is observable. Next, adopting the Fisher information matrix (FIM), a tool to measure the

information carried out by range measurements in an estimation-theoretical framework,

sufficient conditions on the trackers’ motions are derived for the ideal relative geometry

between the trackers and the targets for which the range information acquired for esti-

mating the target’s state is maximal. We then exploit the aforementioned conditions to

plan the motion for the trackers. In this context, each tracker is assigned a curve to track,

referred to as a S-T curve, because it admits a hybrid spatial-temporal parametrization.

It is guaranteed that if the trackers track the S-T curves then target’s state is not only

observable but also the range-information acquired for estimating the target’s state is

maximal. We then propose a distributed estimation and control (DEC) strategy to ad-

dress the constraints on the communication network among the trackers. For this purpose,

a distributed extended Kalman filter (DEKF) is adopted for cooperative estimation of the

target’s state and a distributed consensus control strategy is adopted for cooperative pur-

suit of the target. The latter strategy aims at driving all trackers to a desired vicinity

of the target while holding an optimal target-trackers relative-geometry that maximizes

the range information for estimating the target’s state. Finally, we present an event trig-

gered mechanism for the proposed DEC mechanism where the communications among

the trackers only take place when found necessary, making the proposed method more

efficient for practical implementation.

Keywords

Multi-agent system; Distributed control; Distributed estimation; Event-triggered com-

munications; Synchronization; Consensus; Cooperative path following; Range-based co-

operative navigation and target tracking; Fisher information matrix; Model predictive

control
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Resumo

Esta tese aborda problemas no campo do de controlo cooperativo e estimação de estados

de sistemas multiagentes (MAS) sob estritas restrições de comunicação que incluem: i)

Sincronização de consenso de sistemas gerais não lineares multiagentes, ii) Seguimento

cooperativo de caminhos (CPF) de vários véıculos autónomos com constrangimentos, e

iii) localização e perseguição simultânea cooperativa baseada em distâncias (SLAP) com

vários véıculos autónomos véıculos. Devido às restrições de comunicação impostas pela

topologia da rede de comunicação interagente, onde cada agente (véıculo) só é capaz de

trocar informações com um subconjunto de agentes na rede, os problemas devem ser trata-

dos de um forma distribúıda.

Para resolver o primeiro problema, propomos uma estratégia de controlo distribúıdo com

uma estrutura de comunicação desencadeada por eventos (ETC) que visa reduzir as co-

municações entre os agentes. Esta abordagem possui duas propriedades importantes: i)

estabilização de consenso prática, ou seja, o erro de sincronização que mede a discordância

entre estados dos agentes converge para uma bola centrada na origem, com um raio que

pode ser arbitrariamente pequeno e ii) o intervalo de tempo mı́nimo eventos para cada

agente é estritamente positivo, excluindo portanto o comportamento de Zenão.

O problema de CPF é definido como o problema de dirigir um grupo de véıculos autónomos

com constrangimentos ao longo determinados caminhos espaciais enquanto mantém um

padrão de formação intervéıculo desejado. A solução proposta envolve o desacoplamento

do problema original de CPF em dois subproblemas: i) seguimento de caminho de um

único véıculo com restrições de entrada e ii) coordenação de um sistema multiagente com

restrições de entrada (MAS). O primeiro é resolvido pela adoção de um esquema de con-

trolo preditivo com amostragem de dados (MPC), enquanto o último é resolvido usando

uma nova lei de controlo distribúıdo com um mecanismo de comunicações desencadeadas

por eventos (ETC). A estratégia proposta produz um sistema CPF de malha fechada que

é estável da entrada para do estado (ISS) em relação ao estado do sistema (que consiste

nos erros de seguimento de caminho todos os véıculos e seus erros de coordenação) e a

entrada do sistema, que inclui os limites de desencadeamento de comunicações ETC e
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atrasos de comunicação.

Para resolver o problema de localização e perseguição cooperativa de alvos, primeiro

derivamos as condições sobre o movimento dos véıculos, chamados de rastreadores, sob

as quais o estado do alvo é observável. Em seguida, adotando a matriz de informação

de Fisher (FIM), uma ferramenta para medir a quantidade de informação obtida por

medições de distância sob a perspectiva da teoria de estimação são derivadas condições

suficientes dos movimentos dos rastreadores no que diz respeito à geometria relativa ideal

entre os rastreadores e os alvos para os quais a informação de distâncias adquirida para

estimar o estado do alvo é máxima. Em seguida, exploramos as condições acima men-

cionadas para o planeamento de movimento para os rastreadores. Neste contexto, cada

rastreador recebe uma curva para seguir, referida como curva S-T, porque admite uma

parametrização h́ıbrida espaço-temporal. É garantido que se os rastreadores seguirem as

curvas S-T, então o estado do alvo é não apenas observável, mas também a informação de

distâncias adquirida para estimar o estado do alvo é máxima. Em seguida, propomos uma

estratégia de estimação e controlo distribúıdo (DEC) para abordar as restrições na rede de

comunicação entre os rastreadores. Para este propósito, um filtro estendido de Kalman

distribúıdo (DEKF) é adotado para a estimação cooperativa do estado do alvo e uma

estratégia de controle de consenso distribúıda é adotada para a perseguição cooperativa

do alvo. A última estratégia visa direcionar todos os rastreadores para uma vizinhança

desejada do alvo, enquanto mantém uma geometria relativa ótima de rastreadores que

maximiza a informação de distâncias para estimar o estado do alvo. Finalmente, ap-

resentamos um mecanismo desencadeado por eventos para o mecanismo DEC proposto

onde as comunicações entre os rastreadores só ocorrem quando são necessárias, tornando

o método proposto mais eficiente para uma implementação prática.

Palavras Chave

Sistemas multiagente; Controlo distribúıdo; Estimação distribúıda; Comunicações des-

encadeadas por eventos; Sincronização; Consenso; Seguimento de caminho cooperativo;

Navegação e seguimento de alvo cooperativo baseado em medições de distâncias; Matriz
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de informação de Fisher; Controlo preditivo
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1.1 Multi-agent systems

Motivated by challenging issues that arise in the field of motion coordination of MAS,

this thesis addresses problems in the area of cooperative control of MAS under communi-

cation constraints that involve the use of methodologies from networked control systems,

state estimation theory, optimization, and event-based communications. Our goal is to

develop efficient tools that will allow us to solve cooperative control problems that arise

in the operation of multiple autonomous vehicles in numerous missions such as formation

keeping, cooperative path following, rendezvous, range-based cooperative navigation, and

range-based cooperative target localization and pursuit.

1.1 Multi-agent systems

Over the years, engineers and scientists across diverse fields have been striving to identify

the underlying mechanisms of networked systems. Sociologists use networks to predict the

behaviour of social systems and to help decision makers [Degroot, 1974,Bullo, 2018,Dong

et al., 2018]. Biologists study MAS to understand the behaviors of animal groups such as

flocks of birds, schools of fish, swarms of honey bees, and herds of wildebeests, see [Mar-

tinez et al., 2007,Okubo, 1986,Seeley and Buhrman, 1999] and the references therein. In

the field of control engineering and robotics, researchers study how to bring a number of

physical systems to cooperate in a distributed manner, by exchanging information over a

support communication network, so as to yield a coherent whole capable of performing

an assigned task that might be impossible to be done effectively by a single system. This

gives rise to a very active and exciting research field - cooperative distributed control and

estimation of multi-agent systems [Ren and Beard, 2008,Bullo, 2018,Li and Duan, 2015].

In the context of the current thesis, we study multi-agent systems that are systems com-

posed of multiple interacting elements, known as agents. Agents are autonomous dynam-

ical systems that are capable of performing given local tasks and interacting with other

agents via a communication network established among them to achieve a common goal

(global task). This type of MAS appears in many practical scenarios that involve sensor

networks, multiple autonomous vehicles, and embedded robotic systems, to name but a

few. In the following section, we will discuss some typical applications of MAS in the area

of cooperative control and estimation of multiple autonomous vehicles.

2



1.2 Motivating examples

1.2 Motivating examples

The problems addressed in this thesis are strongly motivated by real word applications

that require the use of cooperative control techniques, whereby a group of multiple vehicles

deployed in a given region, each one carrying different resources, cooperate to achieve a

common goal by exchanging relevant data over an underlying communication network.

Typical cooperative mission scenarios will be discussed in the subsequent sections, namely,

cooperative path following, cooperative range-based navigation, and cooperative target

localization and pursuit.

1.2.1 Cooperative path following (CPF)

CPF, a compelling example of formation control, can be defined as the process of steering a

group of vehicles along given spatial paths, while holding a desired inter-vehicle formation

pattern, without an explicit temporal assignment. In this context, each vehicle is simply

required to move along its assigned path at a desired reference speed that may depend on

where on the path the vehicle is. A simple example of CPF is illustrated in Fig.1.1. In this

setup, each vehicle is assigned a local task, i.e. converge to and follow its preassigned path

(a straight line, in case the figure), while exchanging data with all or some of the other

vehicles via a wireless communication network in order to position itself relative to other

vehicles such that the ensemble will become aligned in a side-by-sided formation. More

formally, consider N spatial paths {Pi : γi → ηi(γi); i = 1, ..., N}, where each path i is

parameterized by the continuous variable γi ∈ R, e.g. arc-length. Notice that the variable

γi is not necessarily path length. In fact, in the context of CPF path parametrization plays

a key role in the problem formulation. The components of each path ηi ∈ R3 typically

includes the position of the path, and is specified by the variable γi. CPF can be viewed

as a two-layer control system: i) path following aims at driving each vehicle to converge

to and follow its assigned path, i.e. making the vehicle’s position pi converges to ηi(γi)

and ii) cooperation along the paths, which is achieved if and only if all path parameters

are synchronized, i.e. γ1 = γ2 = ... = γN and γ̇i = vd for all i = 1, ..., N where vd is the

desired speed of the formation, which may depends on the path parameter its self. Using

CPF, the desired geometry formation along the paths depends on the way the paths are

parameterized. For the example illustrated in Fig.1.1, we can take the path parameters

γi; i = 1, 2, 3 as the arc-lengths of paths; and thereby the side-by-side formation is reached

when all path parameters equal. Detailed explanations on how to parameterize the paths

to achieve different formation patterns can be found in [Ghabcheloo et al., 2009, Hung

3



1.2 Motivating examples

et al., 2020b,Kaminer et al., 2017].

The concept of CPF is extremely useful in many scientific and commercial applications.

Figure 1.1: An example of CPF in 2D. The position of each vehicle i is denoted by pi. Each
path is parametrized by ηi = [0, γi]

T ∈ R2; i = 1, 2, 3 where γi is the arc-length of
the path.

Figure 1.2: Cooperative path following of AUVs in the scope of Wimust project. In this figure,
the top vehicles is a ship. In Sines, we actually used three ASVs to generate the
acoustic signals, instead of the ship. [Abreu et al., 2016a]

In the scope of WiMUST project, CPF is applied to enable a group of AUVs working

in cooperation with ASVs to perform geotechnical acoustic surveys at sea, as illustrated

in Fig.1.2 [Abreu et al., 2016a]. In this application, the autonomous vehicles are used as

intelligent sensing and communication nodes of a reconfigurable moving acoustic network.

4



1.2 Motivating examples

The AUVs are equipped with hydrophone streamers of small aperture, such that the

overall system behaves as a distributed acoustic array capable of acquiring acoustic data

reflected off the seabed, which is insonified through the use of acoustic sources installed

on-board a support ship/boat or ASVs. By actively controlling the geometry of the

vehicle formation, it becomes possible to change the shape of the acoustic array according

to the needs of a specific application [Pedro Abreu and Silva, 2016]. See also [Klemas,

2015, Kaminer et al., 2017] for application of CPF techniques to coastal monitoring and

road search operations.

Although CPF has been studied intensively over the last decade, there are two practical

challenges which are the main topics addressed in this thesis. The challenges involve the

physical constraints on the vehicles’ inputs and the often stringent limitations imposed by

the communication network among the vehicles, as formulated in the following problem.

Problem 1.1 (Constrained CPF). Consider a group of autonomous vehicles and a corre-

sponding set of spatial paths that the vehicles are required to go through at assigned speeds.

Assume that the vehicle inputs (e.g. linear and rotational speeds in the case where only the

vehicle kinematics are considered) are restricted to take values in compact sets. Further

assume each vehicle is only able to exchange information with a subset of vehicles using

an underlying communication network. Design a local controller for each vehicle such that

the group of vehicles achieves CPF.

1.2.2 Range-based cooperative navigation and target localiza-

tion and pursuit

Typically, range-based navigation is defined for an agent, for example, a scuba-diver

or an AUV to find his/its own state (position, and possibly velocity and acceleration

as well) using the information measured by the agent and ranges to a known single or

multiple beacons [Bayat et al., 2016]. If an agent such as AUV can measure its velocity

vector (using a Doppler Velocity Log (DVL)), then only the position of the AUV needs

to be determined. In other situations, velocity and acceleration need to be determined

as well. In cases where beacons are fixed at known positions, the fundamental problem

of range-based navigation is to find conditions on the motion of the agent such that the

agent’s state is observable (or uniquely determined), see [Bayat et al., 2016,Indiveri et al.,

2012, Batista et al., 2011] and references therein. In other cases where the beacons are

5



1.2 Motivating examples

movable and controllable, we are interested in finding the answer to how to control the

beacons such that the agent acquires “sufficiently rich” range-information for navigating

itself. Fig.1.3(left) illustrates the idea of range-based cooperative navigation where the

two ASVs play as cooperative beacons for navigating the scuba-diver and the AUV.

Range-based target localization (or tracking), on the other hand, is defined for one or

multiple trackers as the task of finding the state of a target using only ranges from the

tracker(s) to the target. The state of the target typically includes the target’s position,

velocity, and possibly acceleration, depending on the model of the target adopted. Target

pursuit is defined as a task of driving the tracker(s) to converge to and stay in the vicinity

of the target. This task is crucial when agents are located in an underwater environment

where ranges can only be measured up to a relatively short distance. An example of range-

based cooperative simultaneous target localization and pursuit (SLAP) is illustrated in

Fig.1.3(right) where the ASVs play the roles of trackers.

The cooperative navigation and cooperative target localization above are dual. Thus,

in the context of the current thesis, we address the cooperative target localization and

pursuit that is stated as follows.

Figure 1.3: Examples of range-based cooperative navigation (left), and range-based coopera-
tive target localization and pursuit (right).

Problem 1.2 (Range-based cooperative SLAP). Consider a set of multiple autonomous

vehicles, called trackers, in charge of localizing and pursuing a set of multiple targets.

Each tracker is capable of measuring ranges to the targets, while the information exchange

among the trackers has a stringent communication constraints network with each tracker

being only able to exchange information with a subset of trackers in the network. Design

a distributed estimation and control strategy such that all trackers agree on the character-
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ization of the motion of the targets (e.g. on the evolution of the means and covariances

of their states’ estimates), while guaranteeing that all trackers converge to and stay in a

predefined vicinity of the targets.

1.3 Consensus/synchronization and ETC mechanisms

1.3.1 Consensus/synchronization of multi-agent system

Consensus/synchronization of MAS arises in many control and estimation applications

such as in sensor networks, rendezvous maneuvers, formation control, and CPF of au-

tonomous vehicles where a group of agents must reach agreement on a final state (con-

sensus) or trajectory (synchronization). For a clear and intuitive understanding of the

consensus/synchronization problem we consider the following simple examples.

Example 1.1 (Rendezvous control, [Bullo, 2018]). Consider a network of N agents (e.g.

vehicles) with single integrator dynamics described by

ẋi(t) = ui(t); i ∈ 1, ..., N, (1.1)

where xi = [xi, yi]
T ∈ R2 and ui ∈ R2 are respectively the position and the input of the

agent (in this case, velocity). Each agent is capable of communicating with a subset of

the agents in the network. The distributed control problem is to find inputs ui; i = 1, .., N

based on local information of the agent itself and that received from its neighbors such that

all agent reach a consensus point asymptotically, as illustrated in Fig.1.4. Note that the

consensus point is left free.

Example 1.2 (Distributed estimation, [Battistelli and Chisci, 2016]). Consider a wireless

sensor network with N sensor nodes, in charge of localizing a moving target (see Fig.1.5).

Each sensor node is capable of measuring the distance to the target, performing local

computations, and exchanging information with a subset of sensor nodes in the network.

The consensus estimation problem aims to find a distributed estimation algorithm for each
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1
2

4
3

Figure 1.4: Rendezvous: four agents cooperating to reach consensus on a final position

sensor node such that all sensor nodes reach agreement on the distribution (e.g. mean

and covariance) of the target’s state.

Gateway node

Sensor node

Figure 1.5: Sensor network: multiple sensors cooperate to localize the target (in green)

Example 1.3 (Coordination problem in CPF). Consider a network of N vehicles where

each is assigned a spatial path to follow, parameterized by a variable γi, i = 1, ...N to follow.

The coordination problem consists of controlling the independent motions of the vehicles

along the paths so that consensus (synchronization) on the path parameters is achieved

asymptotically, that is, γi(t) = γj(t) as t→∞;∀i, j = 1, N and all path parameters evolve

with a desired speed profile vd
1, i.e. γ̇i(t) = vd as t→∞;∀i = 1, ..., N .

Algebraic graph theory is the essential tool to solve the problem of MAS consen-

sus/synchronization. From a graph theoretical point of view, the network topology estab-

lished among the agents is considered as a graph. Each agent in the network is represented

1In general, vd can be path dependent, i.e. vd is a function of the path parameters
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by a vertex (node) and a communication link between two agents is represented by an

arc (edge). If the communication links are directional, they induce a directed graph (di-

graph). The graph is undirected if communication links are unidirectional, implying that

for any given link, the information can be exchanged in both directions. For this reason,

in the literature undirected graphs are also called as bidirectional graphs. A path in a

graph is an ordered sequence of nodes such that any pair of consecutive nodes in the

sequence is an edge of the graph. An undirected graph is connected if there exists a path

between any two nodes; otherwise it is unconnected. The set of in-neighbors of an agent

i is represented by N in
i and contains all agents j ∈ N in

i from which agent i can receive

information. See [Bullo, 2018,Ren and Beard, 2008] for an in depth introduction to graph

theory. Fig.1.6 illustrates different types of graphs.

a) Directed graph b) Undirected connected graph c) Undirected unconnected graph

Figure 1.6: Examples of different graphs

To respect the flow of information imposed by the topology of the communication net-

work, estimation and control algorithms designed for each agent i must be implemented in

a distributed manner, i.e. they may only depend on the local state and on the information

received from its in-neighbors as specified by N in
i . For example, regarding the rendezvous

problem stated in Example 1.1, it is well known that if the graph is undirected and

connected, then the distributed control law given by

ui(t) = −
∑
j∈N in

i

xi(t)− xj(t) (1.2)

forces all agents to reach a consensus point asymptotically, i.e. xi(t) = xj(t) for all

i, j = 1, ..., N as t → ∞. Consequently, ui(t) → 0 as t → ∞ as well. Note that if the

agents were to reach the consensus in a finite time, then due to (1.2) ui = 0 for all i,

thereafter, thus maintaining consensus for all times. The proof of this result can be found

in the literature, see for examples [Bullo, 2018, Ren and Beard, 2008]. The rendezvous

problem considered above is also a special case of the general consensus/synchronization

problem addressed in Chapter 2.

9



1.3 Consensus/synchronization and ETC mechanisms

1.3.2 Event-triggered communications

In Example 1.1, the control law (1.2) solves the rendezvous problem, provided that the

communications among vehicles are continuous, that is, the in-neighbors of vehicle i must

transmit their states (positions) to vehicle i instantaneously at every instant of time. In

practice, it may be impossible to meet this requirement, namely in applications where

information is transmitted over a wireless channel, especially if this wireless channel must

be shared among other devices. The current standard method is to schedule communi-

cations to take place periodically and to set the period as small as possible to obtain

adequate performance as continuous communication. However, periodic communication

might not be efficient for networks that have low bandwidth (e.g. acoustic signal) or

involve large number of agents. In recent years, event-triggered communications (ETC)

have come to the fore in order to overcome the above limitations of continuous or periodic

communications. Unlike these, ETC are more reactive since in this setup communications

only occur when required, as determined by desired objectives, leading to more efficient

and cost-effective communication networks.

To grasp the core concepts involved in ETC mechanisms we revisit Example 1.1 and

resolve the Rendezvous problem using a simple but intuitive ETC strategy. Formally, for

each generic agent i, let {ti,k}k∈N be the sequence of time instants at which the agent

transmits its position to its neighbors, as defined by a mechanism that will be explained

later. To avoid continuous or periodic communications, each agent estimates (or predicts)

the positions of its in-neighbors and uses these estimates to update control law (1.2). Let

x̂ij denote the estimate of xj; j ∈ N in
i . In what follows we adopt a simple estimation

model for the evolution of x̂ij as

x̂ij(t) = xj(tj,k), t ∈ [tj,k, tj,k+1). (1.3)

for all j ∈ N in
i . This model implies that x̂ij(t) holds the last transmitted value of xj and

is updated whenever agent i receives a new update from agent j. This simple, almost

naive strategy, is motivated by the fact that once the agents reached a consensus point,

they will remain there thereafter; as a consequence, (1.3) predicts exactly the positions

of the in-neighbors of agent i. The distributed control law for each agent i, in context of
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the ETC mechanism, uses x̂ij rather than xj, and is given by

ui(t) = −
∑
j∈N in

i

xi(t)− x̂ij(t).

= −
∑
j∈N in

i

xi(t)− xj(t) + ej(t)
(1.4)

where ej(t) = xj(t)− x̂ij(t); j ∈ N in
i is the estimation error of agent j′s position, at agent

i. Compared with (1.2), (1.4) has the virtue of putting in evidence the contribution of the

estimation error. Ideally, one would like for the estimation error to vanish in order achieve

the type of performance that is obtained with continuous communications. However, this

would only be valid in the rather uninteresting case where all vehicles had already reached

the consensus point. Thus, we look for a way to control the estimation error to ensure that

x̂ij does not deviate far from the xj so that ETC still guarantees an adequate performance

when compared with that obtained with continuous communications. Note from (1.3)

that

ej(t) = xj(t)− xj(tj,k); j ∈ N in
i t ∈ [tj,k, tj,k+1). (1.5)

Thus, ej also measures the difference between the current position of agent j (xj(t)) and

the last position broadcast to its in-neighbors (xj(tj,k)). To control ej, we let agent j

broadcast its latest position whenever the size of this error exceeds an arbitrarily small

threshold ε ≥ 0. More formally, we say a communication event for vehicle j is triggered

whenever

δj(t) , ‖ej(t)‖ − ε ≥ 0

where δj(t); j = 1, ..., N is so-called the triggering function. According to (1.5), ej(tj,k) = 0

for all k ∈ N, that is, the estimation error will be reset whenever the out-neighbors of

agent j receive a new update. As a consequence, the size of the estimation error is alway

kept in a ball with radius ε, i.e. ‖ej(t)‖ ≤ ε for all t.

As an illustrative example, we simulate the ETC mechanism described above for the

rendezvous problem with four agents whose network topology is modeled by the undirected

graph shown in Fig.1.7. To access the performance of the ETC mechanism, we consider

an “energy-like” function that measures the displacement between the positions of the

agents, given by V = ‖x1 − x2‖+ ‖x2 − x3‖+ ‖x3 − x4‖. Note that V is always positive

and V = 0 if and only if all agents reach the consensus point. Later, we will see in

Chapter 2 that this type of function plays a role of a Lyapunov function to analyze the
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1.3 Consensus/synchronization and ETC mechanisms

convergence of the closed-loop MAS. Numerical simulation results are plotted in Fig.1.8.

The performance of the ETC mechanism depends on how the triggering threshold ε is

selected. The detail of this influence will be discussed in Chapter 2.

Another concern with any event-triggered control or communication mechanism is being

1 2 3 4

Figure 1.7: The undirected graph models the network of vehicles in the rendezvous problem
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a) The disagreement function V with different types of communications.

0 5 10

t[seconds]

Broadcast time instants of the vehicles

b) Broadcast time instants with ε = 0.5: Rows indicate the time instants ti,k, i = 1, ..., 4
at which the agents broadcast their positions to their out-neighbors.

Figure 1.8: Numerical results with the ETC mechanism for the rendezvous problem

able to exclude Zeno behavior, defined as follows.

Definition 1.1 (Zeno behavior, [Nowzari et al., 2019]). Consider a resulting closed-loop

MAS, in which agents are driven by a distributed control protocol with an ETC mechanism.
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A solution for the closed-loop MAS with a given initial condition exhibits Zeno behavior

if there exists T > 0 such that ti,k ≤ T for all k ∈ N and for all i ∈ N .

Intuitively, if the ETC mechanism generates an infinite number of communication

events in a finite time period, the solution exhibits Zeno behavior. The existence of

a positive minimum time interval between two consecutive triggering times avoids this

impractical situation and is thus critical to the characterization of any event-triggered

communication strategy. A rigorous proof showing that the ETC described above for the

rendezvous problem excludes Zeno-behavior will be shown in Chapter 2.

In the text before, through a simple example that borrowed from the Rendezvous prob-

lems, we introduced the core idea behind the ETC mechanisms proposed in the thesis.

In the subsequent chapters, we will show how this idea can be exploited to design ETC

mechanisms for a general consensus/synchronization problem (Chapter 2), CPF (Chapter

3), and range-based cooperative SLAP (Chapter 6). In CPF and range-based cooperative

SLAP, we will show that the ETC mechanisms proposed have the potential of reducing

the number of messages exchanged and the frequency of communications among the ve-

hicles, while guaranteeing an adequate performance as with continuous communications.

These characteristics are of the utmost importance in applications where the transmis-

sion medium imposes stringent communication constraints (e.g. the vehicles operate and

communicate with other vehicles in underwater environment via acoustic communication

channels).

1.4 Contributions and publications

The contributions of thesis are described next.

We first propose an event-triggered communication framework for the problem of MAS

consensus/synchronization, with the dynamics of the agents given by

ẋi = Axi + f(xi, t) +Bui, ∀i = 1, ..., N (1.6)

where xi ∈ Rn and ui ∈ Rm are the state and input of the agent, respectively, A,B are

matrices with appropriate dimensions, and f(·) is a general nonlinear function. Compared

with existing results in the literature, see for example [Liuzza et al., 2016, Su et al.,

2016, Hung et al., 2019], the dynamics of the agents and the network topology are more

general, i.e. the agent dynamics include a general linear and a nonlinear Lipschitz term
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and the underlying communication graphs are directed. In this respect, our results extend

those in [Seyboth et al., 2013, Hung et al., 2019]. The exclusion of Zeno behavior is also

rigorously proved.

Second, we propose a distributed control strategy to solve the constrained CPF problem

stated in Problem 1.1. The solution addresses the constraints on the vehicles’ inputs and

the limitations imposed by the communication network that connects the vehicles [Hung

et al., 2020b]. Specifically,

(i) At the path following level, we develop an MPC scheme for path following that takes

into account the vehicle input constraints.

(ii) At the cooperative level, we propose a novel distributed control strategy for the

coordination of nonlinear MAS where the agents’ input constraints are explicitly

taken into account. We also propose an ETC mechanism that is not only capable

of reducing the frequency of communications among vehicles but is also robust with

respect to time-varying communication delays, making the scheme attractive for

scalable networks with limited communication bandwidth.

Third, we propose a systematic approach to solve the range-based cooperative SLAP

problem stated in Problem 1.2. We identify a few sub-problems where we isolate specific

technical challenges that are present in Problem 1.2. By studying and solving each sub-

problem, we gain insights into a general solution for the original problem. Also, while

addressing each sub-problem we find as byproducts interesting results that stand on their

own.

(i) The first sub-problem involves characterizing the motion of trackers such that the

target’s state is globally observable. Using tools from function analysis, a set of con-

ditions are derived for different type of target maneuvers, providing useful guidelines

for trackers’ motion planning [Hung and Pascoal, 2020b].

(ii) The second sub-problem is to find the optimal motions for the trackers such that

the range-information acquired for estimating the target state is maximal. Using a

Bayesian Fisher Information Matrix (FIM) approach that borrows from estimation

theory, the types of optimal relative motion of the trackers with respect to the

target are characterized. We also propose a receding horizon planning, control,

and estimation framework for the range-based SLAP problem where the constraints

on the trackers’ inputs and the uncertainty of the target are taken into account

explicitly [Hung et al., 2020a].
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(iii) After solving the aforementioned sub-problems, we revisit the original problem. We

exploit the knowledge about observability and optimal trajectories for range-based

target localization to plan desired motions for the trackers. We then propose a coop-

erative distributed estimation and control (DEC) strategy to address the constraints

on the topology of the inter-tracker communication network. For this purpose, a

distributed extended Kalman filter (DEKF) strategy is adopted for cooperative esti-

mation of the target’s state, and a distributed consensus control strategy is proposed

for cooperative pursuit of the target. The latter aims at driving all trackers to a

specified vicinity of the target while holding an optimal target-trackers relative-

geometry that maximizes the range information available estimating the target’s

state. To make the proposed DEC more efficient in terms of communications, we

propose event-triggered mechanisms for the DEKF and for the distributed consen-

sus control strategy where communications among the trackers only take place when

deemed necessary, according to a well defined mathematical criterion. The stability

of the complete closed-loop DEC system is proved rigorously.

Table 1.1: Publications originated by the work presented in this thesis

Topics/Chapters Conf. Jour.
Cooperative control Ch.2: General framework C1a J1e

of MAS with ETC mechanism Ch.3: CPF applications C2b,C3c J2f

Cooperative range-based target Ch.4: Observability analysis C4d

localization and pursuit Ch.5: Optimal motion analysis J3g

Ch.6: DEC approach J4h

a [Hung et al., 2019]
e [Hung and Pascoal, 2020a]
b [Hung et al., 2018]
c [Hung and Pascoal, 2018]
f [Hung et al., 2020b]
d [Hung and Pascoal, 2020b]
g [Hung et al., 2020a]
h [Hung et al., 2021]

In Table 1.1, we list the publications originated by the work reported in this thesis,

organized by topic (chapter) and types of publications.
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1.5 Structure of the thesis

The thesis is divided into two parts and organized as in Fig.1.9. Part I includes Chapters

2 and 3 that describe solutions to problems related to the consensus/synchronization of

homogeneous MAS using event-triggered communications. Part II is consisted of Chap-

ters 4-6 that solve problems involving in the range-based cooperative target localization

and pursuit.

In Chapter 2, we propose a general framework for the consensus/synchronization of

homogeneous MAS using an event triggered communication mechanism. The agents dy-

namics and the network topology considered are sufficiently general to address a large

number of applications, i.e. the agents have linear and Lipschitz nonlinear dynamic terms,

and the underlying communication graphs are directed. The convergence of the closed-

loop MAS is analyzed and the exclusion of Zeno behavior is also rigorously proved.

Chapter 3 addresses the problem of CPF among multiple autonomous vehicles when

the vehicles’ input are constrained. To this effect, we decouple the original CPF prob-

lem into two sub-problems: coordination of MAS and single path following. The first

is tacked by using the results obtained in Chapter 2, whereas the second is solved by a

model predictive control (MPC) strategy. An ETC mechanism is also introduced to re-

duce communications among the vehicles and the communication delay is also addressed.

The stability of the closed-loop CPF system is analyzed and the efficacy of the proposed

method is illustrated via simulation examples.

In Chapter 4, we address the observability problem of range-based target localization

using single or multiple trackers. We consider four cases: i) the target is fixed, ii) the

target’s velocity vector is known, iii) the target’s velocity vector is unknown but constant

iv) and, the target’s acceleration vector is unknown but constant. Conditions on the mo-

tions of the trackers under which the target’s state is fully observable are derived.

Chapter 5 continues the work in Chapter 4 that studies further the motions of the

trackers. The main objective is to find the optimal motion of the trackers that makes

the range-information acquired for estimating the target’s state maximal. To this end,

we adopt the Bayesian Fisher information matrix (FIM) as a means to quantify the

range-information and then find conditions on the motion of the trackers under which the

Bayesian FIM is maximized. When the target’s state is purely deterministic and tracker’s

constraints are neglected, the conditions on the optimal motion of the trackers are derived

analytically. When the uncertainty of the targets and the constraint on the trackers are

taken into account explicitly, a receding horizon optimization framework is proposed to

plan and control the motion of the trackers. Several examples are provided to illustrate
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the efficacy of the proposed method.

Finally, in Chapter 6, we exploit the results derived in Chapter 2-5 to design an efficient

distributed estimation and control (DEC) system to address the problem of cooperative

target-localization and pursuit using multiple autonomous vehicles. First, we show how to

exploit the knowledge on observability and optimal motion of trackers given in Chapters

4-5 to plan the motion of the trackers. We then use the results in Chapters 2-3 to design a

distributed cooperative tracking controller for the trackers to track the desired motion. A

distributed Extended Kalman Filter algorithm is adopted for the cooperative estimation

of the target’s state. The stability of the complete closed-loop DEC system is analyzed,

showing the robustness of the proposed method.
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Figure 1.9: Thesis structure

18



Part I

Cooperative Control of Multi-Agent

System with Event-Triggered

Communications

19



20



2
Consensus/synchronization of

nonlinear multi-agent system with

event-triggered communications

Contents

2.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 The intuition behind the ETC mechanism . . . . . . . . . . . 27

2.5 Consensus/synchronization with ETC mechanism . . . . . . . 33

2.6 Extensions and unified results . . . . . . . . . . . . . . . . . . . 43

21



2.7 Simulation examples . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

22



2.1 Literature review

This chapter describes a solution to the consensus/synchronization problem for a gen-

eral class of non-linear multi-agent systems and network topologies that resorts to a

distributed control strategy with an event-triggered communication (ETC) mechanism.

The strategy proposed has two important properties: i) it yields practical consensus stabi-

lization, that is, the synchronization error that measures the disagreement among agents

converges to a ball centered at the origin, with a radius that can be made arbitrarily small

and ii) the minimum of the inter-event times for each agent is strictly positive, hence Zeno

behavior is excluded. The results obtained are illustrated via simulations.

2.1 Literature review

The problem of consensus/synchronization of multi agent systems (MAS) has attracted

widespread interest in the last two decades due to its applications in the areas of sensor

networks, mobile systems, autonomous robots, etc., where a group of agents must reach

agreement on a final state (consensus) or trajectory (synchronization). Some of the ap-

plications are described in [Hung and Pascoal, 2018, Li et al., 2010, Rego et al., 2019a],

where consensus techniques were used to achieve desired geometric formations of multi-

ple autonomous vehicles. For background materials on this topic the reader is referred

to [Olfati-Saber et al., 2007,Li and Duan, 2015] where communications among the agents

are assumed to occur continuously in time.

Driven by the fact that the bandwidth available for communications among multiple

agents is severely limited in many practical applications, there has been a flurry of activ-

ity in the area of distributed event-triggered control and communications for multi-agent

systems, as reported in [Dimarogonas et al., 2012, Garcia et al., 2013, Meng and Chen,

2013,Nowzari and Cortés, 2016,Nowzari et al., 2019] and the references therein. Among

such studies, MAS with single integrator dynamics have received a great deal of atten-

tion, and many solutions for their coordination have been proposed, see for example the

recent survey in [Nowzari et al., 2019]. One of earliest distributed event-triggered control

solutions for MAS with single integrator dynamics was proposed in [Dimarogonas et al.,

2012], while solutions for both event-triggered control and communications can be found

in [Garcia et al., 2013,Nowzari and Cortés, 2016]. The study of the coordination problem

of MAS with double integrator dynamics using an event-triggered framework is addressed

in [Seyboth et al., 2013], which extends previous results for the case of continuous com-

munications given in [Ren and Beard, 2008]. More recently, a number of authors have

addressed the problem of MAS coordination for the case where the agents have more
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general linear dynamics, [Zhu et al., 2014,Garcia et al., 2014,Garcia et al., 2017,Almeida

et al., 2017]. In [Garcia et al., 2014, Zhu et al., 2014], for example, the authors propose

solutions for the MAS coordination problem where the triggering function adopted is state

dependent, whereas an event-triggered mechanism that is dependent on time is proposed

in [Garcia et al., 2017].

Event triggered coordination of MAS with nonlinear dynamics has been less studied and

only a few results that consider several particular classes of nonlinear system have ap-

peared recently in the literature [Liuzza et al., 2016,Su et al., 2016,Li et al., 2016,Hung

et al., 2019]. A simple class of MAS with nonlinear dynamics was considered in [Liuzza

et al., 2016, Hung et al., 2019], where the authors proposed a distributed model-based

approach. The authors in [Su et al., 2016] addressed the leader-following multi-agent sys-

tems consensus problem with an event-triggered control mechanism. An event-triggered

sampling control approach for directed networks was studied in [Li et al., 2016].

Motivated by the above considerations, the main purpose of this chapter is to develop a

general framework for distributed control and event-triggered communication mechanism

to solve the MAS consensus/synchronization problem where the agents dynamics and

the network topology are sufficiently general to address a large number of applications.

Compared with existing results in the literature, see for example [Liuzza et al., 2016, Su

et al., 2016,Hung et al., 2019], the dynamics of the agents and the network topology are

more general, i.e. the agents have linear and Lipschitz nonlinear dynamic terms, and the

underlying communication graphs are directed. In this respect, our results extend those

in [Seyboth et al., 2013,Hung et al., 2019]. The exclusion of Zeno behavior is also proved

rigorously.

2.2 Preliminaries

2.2.1 Notation

In what follows, we let R,R>0, and R≥0 denote the set of real, positive real, and nonnega-

tive real numbers respectively. We shall use the notation ‖·‖ to denote the Euclidean norm

of a vector. We will use the notation x(t+) := lim
s→t+

x(s). Given matrices A,B ∈ Rn×n

the notation A � B implies that A − B is positive semi-definite. A continuous function

α : [0, a) → [0,∞) is said to be of class K if it is strictly increasing and α(0) = 0. It

is said to be of class K∞ if a = ∞ and α(r) → ∞ as r → ∞. A continuous function

β : [0, a)× [0,∞)→ [0,∞) is said to be of class KL if, for each fixed s, the mapping β(r, s)
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is of class K with respect to r and, for each fixed r, the mapping β(r, s) is decreasing with

respect to s and β(r, s)→ 0 as s→∞. Given a symmetric matrix A, the symbols λmin(A)

and λmax(A) denote the smallest and the largest eigenvalues of A, respectively.

2.2.2 Algebraic graph theory [Bullo, 2018,Diestel, 2005]

A weight digraph G = G(V , E ,A) induced by the communication network of a multi-agent

system consists of a set of N vertices (nodes) V = {1, 2, ...N}, a set of directed edges

E ⊆ V × V , and a weight adjacency matrix A = [aij] ∈ RN×N . The latter satisfies the

conditions aij > 0 if (j, i) ∈ E and aij = 0 otherwise. Here, self-edges (i, i) are not allowed

and hence aii = 0. A directed path from vertex i to vertex j is an ordered sequence

of vertices such that each immediate pair of vertices is an edge. A digraph is strongly

connected if there exists a path from any i ∈ V to any j ∈ V . The set of in-neighbors

and the set of out-neighbors of vertex i are defined as N in
i = {j ∈ V : (j, i) ∈ E} and

N out
i = {j ∈ V : (i, j) ∈ E}, respectively. The in- and out- degree matrices Din and Dout

are defined as Din = diag(din
i ) and Dout = diag(dout

i ) where

din
i =

∑
j∈N in

i
aij, dout

i =
∑

j∈N out
i
aji,

respectively. A digraph is balanced if Din = Dout. Any undirected graph is balanced. The

Laplacian matrix L of a digraph is defined as L = Din − A. If G is strongly connected,

then 0 is a simple eigenvalue of L with associated (right) eigenvector 1 := [1]N×1. Further,

the digraph G is balanced if and only if 1TL = 0.

Remark 2.1. With the graph definition given above, we use the convention that an agent

i can receive information from its neighbors in N in
i and send information to its neighbors

in N out
i .

The following lemma and definition will be used in the thesis.

Lemma 2.1. ( [Yu et al., 2010,Li and Duan, 2015]) Suppose that the graph G is strongly

connected. Then, there is a positive left eigenvector r = [r1, ..., rN ]T ∈ RN of L associated

with the zero eigenvalue of L s.t. rT1 = 1 and RL+LTR � 0, where R = diag(r1, ..., rN) ∈

RN×N .
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2.3 Problem formulation

Definition 2.1 (Generalized algebraic connectivity, [Yu et al., 2010] ). Let L be the

Laplacian matrix of a strongly connected digraph G. The generalized algebraic connectivity

of the graph is defined as

a(L) = min
x 6=0 and x⊥r

xT(RL+ LTR)x

2xTRx
, (2.1)

where R is defined in Lemma 2.1. With the above definition, and if the graph is balanced,

a(L) = λ2(Ls), where Ls , (L + LT)/2. For undirected graphs, a(L) = λ2(L), where the

latter is called the Fiedler eigenvalue of the graph.

2.3 Problem formulation

We consider the problem of synchronizing the trajectories of multiple networked nonlinear

systems (agents). We denote by xi ∈ Rn and ui ∈ Rm the state and the input of agent i,

respectively. Each agent has the nonlinear dynamics given by

ẋi = Axi + f(xi, t) +Bui, (2.2)

for all i ∈ V , where A,B have appropriate dimensions. We assume the nonlinear map

f : Rn×R≥0 → Rn is piecewise continuous in t and Lipschitz in x with Lipschitz constant

l ∈ R≥0, that is, for any y, z ∈ Rn, ‖f(y, t)− f(z, t)‖ ≤ l‖y − z‖.
We denote by G the digraph that describes the inter-agent communications topology and

assume that G is strongly connected. Due to the communication constraints imposed by

G, each agent is only able to receive information from its in-neighboring agents. The

consensus/synchronization problem is stated next.

Problem 2.1 (Consensus/synchronization of MAS). Consider a MAS where the dynamics

of each agent i are described by (2.2) and communications among the agents are imposed

by a digraph G. Find a distributed protocol for ui = ui(xi,xj, t); j ∈ N in
i , i ∈ V such

that regardless of the initial states xi(t0), i ∈ V the agents reach consensus (synchronized)

asymptotically, that is, x1(t) = x2(t) = · · · = xN(t) as t → ∞ and the agents remain

synchronized with identical dynamics described by ẋi = Axi + f(xi, t) for all i ∈ V as

t→∞.
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2.4 The intuition behind the ETC mechanism

From (2.2), if the consensus/synchronization problem is solved then the input ui(t)→
0 as t→∞ for all i ∈ V as well.

It was shown in [Li et al., 2012] that the distributed protocol given by

ui = cK
∑
j∈N in

i

aij(xi − xj) = cK
N∑
j=1

aij(xi − xj) (2.3)

for all i ∈ V , with proper choices of c and K, solves the consensus/synchronization prob-

lem. However, the protocol given by (2.3) relies on continuous communications among

the agents. This, in turn, requires that the in-neighbors of agent i transmit their states

to agent i continuously to update the input ui. Unfortunately, in practice the commu-

nication bandwidth might be limited as all agents might share the same network. This

motivated the development of the distributed control scheme with an ETC mechanism

described in this chapter with the purpose of reducing the number of messages exchanged

and the frequency of communications among the agents. These characteristics are of

the utmost importance in applications where the transmission medium imposes stringent

communication constraints (e.g. cooperative control of multiple autonomous underwater

vehicles (AUVs) [Rego et al., 2019a]).

2.4 The intuition behind the ETC mechanism

Before describing the ETC mechanism for the general consensus/synchronization problem

stated in the previous section, we consider a simple but interesting application of the

general setup to illustrate the underlying idea behind the ETC mechanism proposed.

This application involves the cooperative control of multiple autonomous vehicles, and

is illustrated in Fig.2.1. Let (xI , yI , zI) be unit axes of an inertial frame. For simplicity

of exposition, we assume that the vehicles only maneuver along xI as in Fig.2.1. Let

xi ∈ R and vi ∈ R denote the coordinate and speed of the vehicles along xI , respectively,

where i = 1 for the UAV, i = 2 for the ASV, and i = 3 for the AUV. With the above

assumptions, each vehicle can be considered as a point mass whose motion along xI is

described by the model

ẋi = vi, ∀i ∈ {1, 2, 3}. (2.4)

The cooperative control problem involves finding vi to make the vehicles coordinated

along the xI axis and “fly” with a common constant desired speed vd. To facilitate the
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AUV AUV

ASV ASV

UAV UAV

Figure 2.1: Cooperative control of multiple autonomous vehicles

derivation of a control law for vi the latter can be split in two components as

vi = vd + ui ∀i ∈ {1, 2, 3}, (2.5)

where ui; i ∈ {1, 2, 3} are the correction speeds needed to found in order to achieve

coordination between the vehicles. Substituting (2.5) in (2.4) yields

ẋi = vd + ui, ∀i = 1, 2, 3. (2.6)

In this example, the UAV can exchange information with the ASV via a radio link,

while the AUV can exchange information with the ASV through an acoustic channel.

With this setup, the vehicles’ communication network can be modeled by a bidirectional

(undirected) graph as in Fig.2.2.

The vehicles’ cooperative control problem is stated as follow.

Problem 2.2 (UAV-ASV-AUV cooperative control). Consider the network of three vehi-

cles where the motion of each is modeled by (2.6). Find a protocol for ui, i ∈ {1, 2, 3} sub-
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AUV

Figure 2.2: The graph induced by the vehicles’ network

ject to the constraints imposed by the vehicles’ communication network to make the vehicles

aligned along xI and move with a desired constant speed vd, i.e. x1(t) = x2(t) = x3(t) and

ẋ1(t) = ẋ2(t) = ẋ3(t) = vd as t→∞, see Fig.2.1.

Clearly, the cooperative control problem stated above is a special case of the consen-

sus/synchronization problem formulated in the previous section. This is also a particular

case of the cooperative path following problem described in Problem 1.1 of Chapter 1,

where all the vehicles are already stayed on the desired paths which, in this case, are

straight lines parallel to the xI axis. We will come back and address the general cooper-

ative path following in the next chapter.

The coordination problem stated above can be solved using the protocol (2.3), written

explicitly for all vehicles as

u1 = −k(x1 − x2), u2 = −k(2x2 − x1 − x3), u3 = −k(x3 − x2), (2.7)

for any k > 0. This control protocol implies that in order to compute ui; i = {1, 2, 3} the

vehicles must update the state of their neighbors continuously. The ETC mechanism pro-

posed in this chapter aims to relax this strict requirement and also provides an adequate

tool to reduce communications among the vehicles while still guarantee the coordination

performance.

In the proposed ETC mechanism, the vehicles predict the states of their neighbors and

use them in protocol (2.7). This implies that the vehicles are not require to transmit their

states to their neighbors continuously; instead, the transmission only happen when found

necessary for their neighbors to correct the predictions. Let {ti,k}; i = {1, 2, 3}, k ∈ N
denote the sequences of time instants at which the vehicles transmit their states. The
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2.4 The intuition behind the ETC mechanism

main goal of the ETC mechanism is to specify these sequences, i.e. to decide when the

vehicles must transmit their states to their neighbors.

For the simplicity of exposition, we now describe the ETC mechanism involving in the

transmission of the ASV’s state (x2), that is, we show how the ETC mechanism specifies

the sequence {t2,k}; k ∈ N for the ASV. For the other vehicles, the ETC mechanism can

be derived in a similar manner. To this end, let x̂1
2 and x̂3

2 be the estimate of the ASV’s

state, predicted by the UAV and the AUV, respectively; see the red variables at the UAV

and AUV in Fig.2.3. To predict the ASV’s state, the UAV and the AUV can adopt the

following simple estimator/predictor:

x̂i2 :

{
˙̂xi2 = vd

x̂1
2(t+i2,k) = x2(t2,k)

i = 1, 3 (2.8)

where {ti2,k}; i = 1, 3, k ∈ N denote the time instant at which the UAV and AUV receive

x2(t2,k). This estimator can be interpreted as follows:

• The first equation of (2.8) is motivated from the fact that if all vehicles get coordi-

nated then all would move with the same desired speed vd.

• The second equation of (2.8) implies that the estimates of the ASV’s state are

corrected whenever the UAV and the AUV receive the most recent state of the

ASV.

Suppose that communication delays are neglected, that is, ti2,k = t2,k for all i = 1, 3 and

k ∈ N. Then, (2.8) can be rewritten as

x̂i2 :

{
˙̂xi2 = vd

x̂1
2(t2,k) = x2(t2,k)

i = 1, 3. (2.9)

Once the estimates of the ASV’s state are available the correction speeds of the UAV and

the AUV are updated by

u1 = −k(x1 − x̂1
2), u3 = −k(x3 − x̂3

2), (2.10)

where, compared with (2.7), the UAV and the AUV use the estimates of the ASV’s state,
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AUV

Figure 2.3: The graph induced by the vehicles’ network

instead of its true value. To facilitate the analysis u1 and u3 in (2.10) can be rewritten as

u1 = −k(x1 − x2 − e1
2)

u3 = −k(x3 − x2 − e3
2),

(2.11)

where

e1
2 , x̂1

2 − x2, and e3
2 , x̂3

2 − x2 (2.12)

are the estimation errors of the ASV’s state at the UAV and the AUV, respectively. The

underlying idea behind the ETC mechanism is to find a way to control these estimation

errors, forcing them to be bounded in a “small” region in order to guarantee that the

UAV and AUV always have “good” predictions of the ASV’s state. Notice that due to

the second equation of (2.9) these estimation errors are reset to zero whenever the UAV

and AUV receive a new state from the ASV. The problem now is how the ASV can

“perceive” the estimation errors at the UAV and AUV in order for it to broadcast its

state when these errors are large (or exceed a certain threshold). To solve this problem,

the ASV runs an estimator identical to the estimators run by the UAV and AUV, given

by

x̂2 :

{
˙̂x2 = vd

x̂2(t2,k) = x2(t2,k),
(2.13)

where x̂2 is the variable that can be considered as a “copy” of x̂1
2 and x̂3

2; see the red

variable at the ASV in Fig. 2.3. Because x̂1
2 and x̂3

2 in (2.9) and x̂2 in (2.13) are initialized
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at the same value it follows that

x̂2(t) = x̂1
2(t) = x̂3

2(t) (2.14)

for all t. This implies that x̂2 can help the ASV monitor how good the UAV and the AUV

predicts its state. Thus, by letting the ASV broadcast its state whenever

|x̂2 − x2| ≥ ε, (2.15)

where ε ≥ 0 is called as “triggering threshold”, then due to (2.12), (2.14), and the reset

condition in (2.9), the estimation errors satisfy

|e1
2(t)| = |e3

2(t)| ≤ ε ∀t. (2.16)

Thus, by choosing the size of ε, we can control the transmission frequency of the ASV’s

state. Formally, the sequence {t2,k}, specified by the ETC mechanism is given by

t2,k+1 = inf{t > t2,k : |x̂2(t)− x2(t)| ≥ ε}. (2.17)

We now apply the ETC mechanism presented above to specify when the UAV and the

ASV must transmit their states to the ASV. First, the ASV runs two estimators to predict

the states of the UAV and the AUV, given by

x̂2
1 :

{
˙̂x2
1 = vd

x̂2
1(t+21,k) = x1(t1,k)

x̂2
3 :

{
˙̂x2
3 = vd

x̂2
3(t+31,k) = x3(t3,k),

(2.18)

where x̂2
1 and x̂2

3 denote the estimates of the UAV and the AUV states, computed by

the ASV, respectively; see Fig.2.3. In order to monitor the estimation errors made by

these estimations, the UAV and the AUV run two estimators identical to those in (2.18)

described by

x̂1 :

{
˙̂x1 = vd

x̂1(t+1,k) = x1(t1,k)
x̂3 :

{
˙̂x3 = vd

x̂3(t+3,k) = x3(t3,k).
(2.19)
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Recall that without communication delays, (2.19) and (2.18) are identical, that is,

x̂1(t) = x̂2
1(t) and x̂3(t) = x̂2

3(t), (2.20)

for all t. With the ingredients described, the sequences {t1,k} and {t3,k} can be specified

by
t1,k+1 = inf{t > t1,k : |x̂1(t)− x1(t)| ≥ ε},

t3,k+1 = inf{t > t3,k : |x̂3(t)− x3(t)| ≥ ε}.
(2.21)

Finally, with the ETC mechanism the input of the ASV is updated as

u2 = −k(2x2 − x̂2
1 − x̂2

3), (2.22)

where x̂2
1 and x̂2

3 are given by (2.18).

In the next section, we will generalize the idea presented in this section to design an ETC

mechanism for the general consensus/synchronization problem in Section 2.3.

2.5 Consensus/synchronization with ETC mechanism

In this section, we first describe the process of designing an ETC mechanism for the general

consensus/synchronization stated in Section 2.3, after which we perform an analysis of

the convergence properties of MAS synchronization.

2.5.1 Design of the ETC mechanism

In a ETC mechanism, the control law (2.3) uses, for each agent, the estimates of its in-

neighbor states (xj; j ∈ N in
i ), instead of their true states. Let x̂ij be an estimate of xj

computed by agent i (the procedure to compute this estimate will be explained later).

The control law with the ETC mechanism that we propose is given by

ui = cK
∑
j∈N in

i

aij(xi − x̂ij) (2.23)

for all i ∈ V . The underlying idea in the proposed ETC mechanism is that if x̂ij can

provide a “good” estimate of xj, then the communication among agents does not have to
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be continuous. We propose the following estimator for x̂ij:

x̂ij :

{
˙̂xij = Ax̂ij + f(x̂ij, t)

x̂ij(t
+
ij,k) = xj(tj,k)

(2.24)

for i ∈ V and j ∈ N in
i , where {tj,k}k∈N, to be defined, is the sequence of time instants at

which agent j broadcasts its state to its out-neighbors, while {tij,k}k∈N is the corresponding

sequence of time instants at which agent i receives updates on the state of agent j; j ∈ N in
i .

Note that {tij,k}k∈N is different from {tj,k}k∈N when there is latency in the communications

channel. Recall that the main goal of the ETC mechanism is to specify {ti,k}k∈N for all

i ∈ V, i.e. to decide when the agents must transmit their states to their out-neighbors.

The structure of the estimator (2.24) is motivated by the fact that if synchronization were

achieved perfectly, i.e. xi = xj for all i, j ∈ V , then the input of each agent would remain

at zero, and in this case the estimated variables would be the true states of the agents.

Adopting the idea we presented in the simple example in the previous section, in order

to control the error between xj and x̂ij we define a variable x̂j; j ∈ V as a “replica” of

x̂ij; i ∈ N out
j at agent j. The dynamics of x̂j are given by

x̂j :

{
˙̂xj = Ax̂j + f(x̂j, t)

x̂j(t
+
j,k) = xj(tj,k);

(2.25)

Clearly, if communication delays are negligible, i.e. tij,k = tj,k for all k, then it can be

seen from (2.24) and (2.25) that x̂j(t) = x̂ij(t) for all t. See Fig.2.4 as an illustration

of the underlying idea of the ETC mechanism for a network with three agents. Since

Figure 2.4: An illustrative example: without communication delays, the ETC mechanism
ensures that x̂j and x̂ij are synchronized, i.e. x̂j(t) = x̂ij(t) for all t and
i ∈ N out

j , j ∈ V.

x̂j(t) = x̂ij(t), the protocol in (2.23) can be rewritten as

ui = cK
∑
j∈N in

i

aij(xi − x̂j). (2.26)
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Because aij = 0 if j 6∈ N in
i , eq. (2.26) can be rewritten as

ui = cK
N∑
j=1

aij(xi − xj + ej) (2.27)

for all i, j ∈ V , where

ej , xj − x̂j (2.28)

for all j ∈ V . Compared with the protocol for continuous communications given by (2.3),

the protocol in (2.27) has the contribution of the estimation error ej for all j ∈ V . The

key point in the proposed ETC mechanism is that if ej for all j ∈ V can be enforced to be

bounded then, as we will show later, the synchronization error between agents will also

be bounded. This idea was proposed in [Tabuada, 2007], where the author introduced

an event-triggered control mechanism to a stabilization problem of nonlinear systems. To

ensure that the estimation error ej; j ∈ V is bounded, we allow agent j to broadcast its

state (xj) whenever ‖ej‖ reaches a designed bounded threshold function hj(·) that, in

general, can be parameterized by time as hj(t). Formally, for each agent i; i ∈ V we define

an event-triggering function δi(t) for the communications as

δi(t) = ‖ei(t)‖ − hi(t), (2.29)

where hi(t) belongs to a class of non-negative functions C defined by C := {f : R≥0 →
R≥0|cl ≤ f(t) ≤ cu} for all i ∈ V . For example, hi(t) = c1 + c2e

−αt, where c1, c2, α ∈ R≥0

are constant parameters, see [Seyboth et al., 2013, Hung et al., 2019]. With the above

definition, agent i; i ∈ V will transmit its state to its out-neighbors whenever δi(t) ≥ 0.

Formally, the time sequence {ti,k} is specfied by the ETC mechanism as

ti,k+1 = inf{t > ti,k : δi(t) ≥ 0}. (2.30)

At this point, we have the necessary ingredients to summarize the proposed ETC frame-

work for the consensus/synchronization problem described above. The resulting procedure

is summarized in Algorithm 2.1. Inspired from [Li et al., 2012], the gains c and K in pro-

tocol (2.23) can be computed using Algorithm 2.2. The rationale behind Algorithm 2.2

will become clear in the next sub-section.

35



2.5 Consensus/synchronization with ETC mechanism

Algorithm 2.1 ETC mechanism for agent i

1: At every time t, agent i implements the following procedure:
2: procedure coordination and communication
3: if δi(t) ≥ 0 then
4: Broadcast xi(t)
5: Reset x̂i using (2.25);

6: if Receive a new message from agent j then
7: if j ∈ N in

i then
8: Reset x̂ij using (2.24);

9: Run the estimators (2.24) and (2.25);
10: Update the protocol for ui using (2.23);
11: return ui

Algorithm 2.2 Selecting the control gains in (2.23)

1: procedure Chose K
2: Solve the following linear matrix inequality (LMI) for variables P , τ , and µ:

P = PT, P � 0, (2.31a)

τ > 0, µ > 0, (2.31b)[
AP + PAT − 2τBBT + µlIn P

P −µIn/l

]
≺ 0 (2.31c)

3: Chose matrix K = −BTP−1

4: procedure Chose c
5: Compute a(L) given by (2.1).
6: Chose any coupling gain c ≥ τ/a(L).

2.5.2 Convergence analysis

We now analyze the synchronization properties of the closed-loop MAS with the ETC

algorithm given in Algorithm 2.1. To this end, let

ξi , xi −
N∑
j=1

rjxj, (2.32)

where rj is the jth component of the positive left eigenvector r of the graph Laplacian

matrix defined in Lemma 2.1. Note that if the graph is connected and balanced, then

r = 1/N . In this case, ξi measures the disagreement between agent i’s state and the

average of all agents’ state. Let also ξ , [ξT
1 , ..., ξ

T
N ]T ∈ RnN be the synchronization error

vector that captures the disagreement among the agents’ states. From (2.32), ξ can be
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rewritten as

ξ = Wx, (2.33)

where x , [xT
1 , ...,x

T
N ]T ∈ RnN and

W , (IN − 1rT)⊗ In. (2.34)

With the above definition, it is clear that all agents are synchronized, that is, x1 = x2 =

... = xN if and only if ξ = 0. Therefore, to analyze the synchronization of the MAS, we

analyze the convergence of the synchronization error ξ to zero. The main results of the

chapter are summarized and stated mathematically next.

Theorem 2.1. Consider the closed-loop multi-agent system described by (2.2), driven by

the distributed control strategy and the ETC mechanism specified in Algorithm 2.1. Sup-

pose further that there exists a solution to the LMI (2.31). Let also h , [h1, ..., hN ]T be the

vector-valued function containing all threshold functions. Then, the following statements

hold true.

(i) There exist a KL class function β and a K class function γ such that for any initial

state ξ(t0) the synchronization error ξ satisfies

‖ξ(t)‖ ≤ β(‖ξ(t0)‖, t− t0) + γ( sup
t0≤τ≤t

‖h(τ)‖). (2.35)

(ii) If the threshold functions are designed such that lim
t→∞

hi(t) = cl for all i ∈ V, then

lim
t→∞
‖ξ(t)‖ ≤ r1 =

2‖F1‖λmax(R⊗ P−1)

λmin(H2)λmin(R⊗ P−1)

√
Ncl, (2.36)

where

F1 , (R⊗ P−1)W (A⊗ cBBTP−1) (2.37)

and

H2 = −(IN ⊗ P )(R⊗H1)(IN ⊗ P ), (2.38)
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with

H1 , AP + PAT − 2τBBT + µlIn + µ−1lP 2 (2.39)

(iii) If all threshold functions hi; i ∈ V are lower bounded by cl > 0, then the closed-loop

MAS system does not exhibit Zeno behavior.

The result stated in i) indicates that the synchronization error vector is input-to

state stable (ISS) with respect to the input h (see the definition of ISS in Definition

A.1, Appendix A). This also implies that the synchronization error is bounded for any

bounded threshold functions that, in the context of the ETC mechanism, are user designed

functions used as tuning knobs to trade off communication rate against synchronization

performance. The result in ii) is a consequence of i) and indicates that if the threshold

functions converge, then the synchronization error vector converges as well. The size of

the ball that the coordination error ξ converges to depends explicitly on the lower bound

of the threshold functions. Theorem 2.1 is proved as follows:

i) To show the inequality in (2.35) we analyze the closed-loop dynamics of the synchro-

nization error vector ξ. First, substituting the ETC protocol for ui given by (2.27) in

(2.2) yields

ẋ = (IN ⊗ A+ cL⊗BK)x + g(x, t) + η, (2.40)

where

g(x, t) ,

 f(x1, t)
...

f(xN , t)

 , η ,

 cBK
∑N

j=1 a1jej
...

cBK
∑N

j=1 aNjej

 . (2.41)

Thus, from (6.55) and (2.40) the closed-loop dynamics of ξ are given by

ξ̇ = W ẋ = (IN ⊗ A+ cL⊗BK)ξ +W (g(x, t) + η) , (2.42)

where we used the fact that W (IN ⊗ A+ cL⊗ BK) = (IN ⊗ A+ cL⊗ BK)W . We now

consider the Lyapunov function candidate defined as

V = ξT(R⊗ P−1)ξ, (2.43)

where P is given by Algorithm 2.2 and R is defined in Lemma 2.1. Since P � 0 and R

is a positive diagonal matrix, V is clearly positive definite. Its time derivative along the
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trajectory of (2.42) is given by

V̇ = 2ξT(R⊗ P−1)(IN ⊗ A+ cL⊗BK)ξ︸ ︷︷ ︸
,X

+ 2ξT(R⊗ P−1)Wg(x, t)︸ ︷︷ ︸
,Y

+ 2ξT(R⊗ P−1)Wη︸ ︷︷ ︸
,Z

(2.44)

The term X in (2.44) can be rewritten as

X = 2ξT(R⊗ P−1A+ cRL⊗ P−1BK)ξ. (2.45)

Let ζ , (IN ⊗ P−1)ξ. Substituting K = −BTP−1 defined in Algorithm 2.2 in (2.45)

yields

X = ζT
(
R⊗ (AP + PAT)

)
ζ − ζT

(
c(RL+ LTR)⊗BBT

)
ζ. (2.46)

Because (rT ⊗ In)ξ = 0, (rT ⊗ In)ζ = 0. Therefore, using Definition 2.1, we obtain

ζT
(
c(RL+ LTR)⊗BBT

)
ζ ≥ 2ζT(R⊗ ca(L)BBT)ζ.

Thus, X in (2.46) is bounded as

X ≤ ζT
(
R⊗ (AP + PAT − 2ca(L)BBT)

)
ζ. (2.47)

Furthermore, if c is chosen such that c ≥ τ/a(L) with τ > 0, as given by Algorithm 2.2,

then

X ≤ ζT
(
R⊗ (AP + PAT − 2τBBT

)
ζ. (2.48)

Let x̄ ,
∑N

i=1 rixi. The term Y in (2.44) can be expanded as

Y = 2
N∑
i=1

riξ
T
i P
−1

(
f(xi, t)−

N∑
j=1

rjf(xj, t)

)

= 2
N∑
i=1

riξ
T
i P
−1 (f(xi, t)− f(x̄, t))︸ ︷︷ ︸
,Y1

+ 2
N∑
i=1

riξ
T
i P
−1

(
f(x̄, t)−

N∑
j=1

rjf(xj, t)

)
︸ ︷︷ ︸

,Y2

.
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Because
∑N

i=1 riξi = 0, it follows that Y2 = 0. Thus, using the Lipschitz assumption on

f(·) and Young’s inequality, we obtain

Y = Y1 ≤ 2
N∑
i=1

ril
∥∥ξT

i P
−1
∥∥‖ξi‖ ≤ N∑

i=1

rilξ
T
i

(
µ(P−1)2 + µ−1In

)
ξi

= ζT
(
R⊗

(
µlIn + µ−1lP 2

))
ζ

(2.49)

for every µ > 0.

We now compute the upper bound for the term Z in (2.44). Defining e = [eT
1 , ..., e

T
N ]T ∈

RnN , η can be rewritten from (2.41) as

η = (A⊗ cBK)e = −(A⊗ cBBTP−1)e, (2.50)

where A is the adjacency matrix of the graph G. Substituting (2.50) to Z in (2.44) we

obtain

Z ≤ 2‖ξ‖
∥∥(R⊗ P−1)W (A⊗ cBBTP−1)

∥∥‖e‖
= 2‖ξ‖‖F1‖‖e‖,

(2.51)

where F1 is given by (2.37). Thus, from (2.48),(2.49) and (2.51) the time derivative of V

in (2.44) is upper bounded as

V̇ ≤ ζT(R⊗H1)ζ + 2‖ξ‖‖F1‖‖e‖, (2.52)

where H1 is given by (2.39). Note that H1 is symmetric. Furthermore, from the LMI

(2.31c) in Algorithm 2.2, H1 is also negative definite (this can be seen by using Schur’s

complement to rewrite H1 in the form of LMI (2.31c)). Because ζ = (IN ⊗ P−1)ξ,

ξ = (IN ⊗ P )ζ. Inserting ξ and H2 defined in (2.38) in (2.52), we obtain

V̇ ≤ −ξTH2ξ + 2‖ξ‖‖F1‖‖e‖ ≤ −λmin(H2)‖ξ‖2 + 2‖ξ‖‖F1‖‖e‖

≤ −αξ(‖ξ‖) ∀‖ξ‖ ≥ ρ(‖e‖)
(2.53)

where αξ ∈ K and ρ ∈ K∞ are functions defined by αξ(r) = (1 − θ)λmin(H2)r2 and

ρ(r) = 2‖F1‖
θλmin(H2)

r, respectively, and θ ∈ (0, 1). Invoking the ISS-Theorem (see Theorem

A.1, Appendix A), we conclude that V , given by (2.43), is an ISS-Lyapunov function for

the synchronization error vector system given by (2.42) and the system is input to state
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stable (ISS) with respect to the state ξ and the input e. This implies that there exist

functions β ∈ KL, γ ∈ K such that for any initial state ξ(t0) the synchronization error

vector satisfies

‖ξ(t)‖ ≤ β(‖ξ(t0)‖, t− t0) + γ( sup
t0≤τ≤t

‖e(τ)‖) (2.54)

for all t ≥ t0. Furthermore, with the ETC mechanism the error ei satisfies ‖ei(t)‖ ≤ hi(t)

for all t ≥ t0, hence ‖e(t)‖ ≤ ‖h(t)‖ for all t ≥ t0. Substituting this result in (2.54), we

conclude that the inequality (2.35) holds true.

ii) We now prove the second statement in the theorem. For this purpose, we define

two class K functions α1(‖ξ‖) = λmin(R ⊗ P−1)‖ξ‖2 and α2(‖ξ‖) = λmax(R ⊗ P−1)‖ξ‖2.

Clearly, the Lyapunov function in (2.43) satisfies α1(‖ξ‖) ≤ V ≤ α2(‖ξ‖). Hence, using

again Theorem 4.19 in [Khalil, 2002] we obtain

γ(r) = α−1
1 (α2(ρ(r))) =

2‖F1‖λmax(R⊗ P−1)

θλmin(H2)λmin(R⊗ P−1)
r. (2.55)

Furthermore, if lim
t→∞

hi(t) = cl for all i ∈ V , then lim
t→∞
‖h(t)‖ =

√
Ncl. Substituting this

relation and (2.55) in (2.35) we conclude that the synchronization error ξ satisfies (2.36).

iii) We now prove the third statement of the theorem by showing that the minimum inter-

event time for every agent is strictly positive if cl > 0. To this end, let ti,k and ti,k+1 be

successive triggering times at which agent i sends its state to its out-neighboring agents.

We consider the evolution of the estimation error ei(t) during the interval Ti,k , [ti,k, ti,k+1)

when ei(t) is continuous. It follows from (2.28) that ėi(t) = ẋi − ˙̂xi = Aei + (f(xi, t) −
f(x̂i, t)) +Bui. Furthermore, ei(t

+
i,k) = 0 because x̂i(t

+
i,k) = xi(t

+
i,k) (see (2.25)). Hence,

‖ei(t)‖ ≤
∫ t

ti,k

‖Aei(τ)‖dτ +

∫ t

ti,k

‖f(xi(τ), τ)− f(x̂i(τ), τ)‖dτ +

∫ t

ti,k

‖Bui(τ)‖dτ

≤
∫ t

ti,k

(‖A‖+ l)‖ei(τ)‖dτ +

∫ t

ti,k

‖Bui(τ)‖dτ
(2.56)

for all t ∈ Ti,k. Note that the last inequality follows from the Lipschitz property of f(·).
To find an upper bound for ei we now compute an upper bound for ui(t) for all i ∈ V .

Let u := [uT
1 , ...,u

T
N ]T. Substituting K = −BTP−1 to (2.27) we obtain

u = −(cL⊗BBTP−1)x− (A⊗BBTP−1)e

= −Gξ − Te,
(2.57)
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where G , (cL⊗BBTP−1) and T , (A⊗BBTP−1). Observe that for all i ∈ V

‖ui(t)‖ ≤ ‖u(t)‖
(2.57)

≤ ‖G‖‖ξ(t)‖+ ‖T‖‖e(t)‖. (2.58)

Recall also that ‖e(t)‖ ≤ ‖h(t)‖ ≤
√
Ncu for all t ≥ t0, where cu is the upper bound for

hi(t). Hence, it follows from (2.35) and (2.58) that

‖ui(t)‖ ≤ ū , ‖G‖
(
β(‖ξ(t0)‖, 0) + γ(

√
Ncu)

)
+ ‖T‖

√
Ncu

for al t ≥ t0. Since β ∈ KL, ū only depends on the initial condition of ξ, ū is the upper

bound for ui(t) for all t ≥ t0 and i ∈ V . Therefore, from (2.56), ei(t) can be bounded as

‖ei(t)‖ ≤
∫ t

ti,k

(‖A‖+ l)‖ei(τ)‖dτ + (t− ti,k)‖B‖ū.

Let

y(t) = ‖ei(t)‖, λ(t) = (t− ti,k)‖B‖ū, and µ = ‖A‖+ l.

Applying Gronwall-Bellman inequality (see Lemma A.1 in [Khalil, 2002]) and note that

µ is a constant, we obtain

y(t) ≤ λ(t) + µ

∫ t

ti,k

λ(s)eµ(t−s)ds = λ(t)−
∫ t

ti,k

λ(s)deµ(t−s).

Applying the integration by parts for the last equality, we obtain

y(t) ≤ λ(t)−
∫ t

ti,k

λ(s)deµ(t−s) = λ(t)− λ(s)eµ(t−s)
∣∣∣t
ti,k

+ ‖B‖ū
∫ t

ti,k

eµ(t−s)ds

= λ(t)− λ(t) +
‖B‖ū
µ

(eµ(t−ti,k) − 1)

= ‖B‖ū
(
e(‖A‖+l)(t−ti,k) − 1

)
/ (‖A‖+ l) .

Hence,

‖ei(t)‖ ≤ ‖B‖ū
(
e(‖A‖+l)(t−ti,k) − 1

)
/ (‖A‖+ l)︸ ︷︷ ︸

,∆(t)

. (2.59)

Because a broadcast event for agent i is triggered if and only if δi(t) crosses zero or

‖ei(t)‖ = hi(t), the next event is triggered not earlier than time t∗ > ti,k, given by the
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solution of the equation ∆(t) = cl. Hence, the minimum inter-event time for any agent is

determined by

τ1 := t∗ − ti,k =
ln (1 + cl(‖A‖+ l)/(‖B‖ū))

‖A‖+ l
> 0. (2.60)

Since there is a positive lower bound τ1 on the inter-event intervals, there are no accu-

mulation points in the event sequences and therefore Zeno behavior is excluded. This

completes the proof of Theorem 2.1. �

Remark 2.2. Note that the LMI (2.31) in Algorithm 2.2 is equivalent to the LMI in [Li

et al., 2012] (see eq. (6) in [Li et al., 2012]). The feasibility of the LMI in (2.31) was

discussed in [Li et al., 2012]. For the case of linear MAS systems or when the Lipschitz

constant l = 0, the LMI in (2.31) is equivalent to finding τ > 0 and P � 0 such that

AP+PAT−2τBBT ≺ 0. The feasibility of the inequalities is equivalent to the pair (A,B)

being controllable.

2.6 Extensions and unified results

In the previous section, the distributed protocol given by (2.23) uses the true state of

agent i (xi) to update ui. In this section, we analyze the synchronization of MAS by

using the following protocol

ui = cK
∑
j∈N in

i

aij(x̂i − x̂ij), (2.61)

where x̂i and, x̂ij are given by given by (2.25) and (2.24), respectively, for all i, j ∈ V . With

this protocol, we will see that the result of our ETC mechanism in this section generalizes

some of the existing results in the literature (for example [Seyboth et al., 2013, Hung

et al., 2019]) where the agents’ dynamics and the network topologies are special cases of

the problem considered in the chapter. We obtain the following result

Theorem 2.2. Consider the closed-loop MAS described by (2.2), driven by the distributed

control strategy and the ETC mechanism specified in Algorithms 2.1 and 2.2, where the

distributed protocol given by (2.61) is used rather than (2.23). Then, the following state-

ments hold true.
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(i) The properties i) and iii) stated in Theorem 2.1 are satisfied.

(ii) Furthermore, if the threshold functions are designed such that lim
t→∞

hi(t) = cl for all

i ∈ V, then

lim
t→∞
‖ξ(t)‖ ≤ r2 =

2‖F2‖λmax(R⊗ P−1)

λmin(H2)λmin(R⊗ P−1)

√
Ncl, (2.62)

where

F2 , (R⊗ P−1)W (L⊗ cBBTP−1), (2.63)

and H2 is given by (2.38).

Proof: The proof is done similarly to the proof of Theorem 2.1. �

It can be observed from (2.36) and (2.62) that r1 is computed using the adjacency matrix

A, whereas r2 is computed using the laplacian matrix L (see the difference between F1 and

F2). Basically, the two bounds are equivalent as both matrices represent the connectivity

of the considered digraph.

We next show that the asymptotic bound given by (2.62) generalizes some existing results

in the literature.

2.6.1 Average consensus [Seyboth et al., 2013]

In [Seyboth et al., 2013], the authors considered the average consensus problem for undi-

rected graphs where the dynamics of each agent is given by

ẋi = ui (2.64)

for all i ∈ V and xi,ui ∈ R. Compared with the general form given by (2.2), the system

(2.64) has n = m = 1, A = 0, B = 1 and l = 0. With these parameters, the LMI given

by (2.31) is feasible for every τ > 0 and P > 0. Thus, we can chose τ = λ2(L) > 0, c = 1

and P = 1 to satisfy Algorithm (2.2). Furthermore, because the graph considered is

undirected, it follows from Lemma 2.1 that R = IN/N . Substituting the above parameters

in H2 given by (2.38) and in F2 given by (2.63) we obtain H2 = 2λ2(L)IN and F2 = L. In

addition, the authors use the threshold functions hi(t) = c1e
−αt + c0 for all i ∈ V , hence
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cl = c0. Inserting the above parameters in (2.62) we obtain

r2 = ‖L‖
√
Nc0/λ2(L), (2.65)

which is identical to the bound in Theorem 3.2 (see eq. (8) in [Seyboth et al., 2013]).

2.6.2 A simple nonlinear system [Hung et al., 2019]

In [Hung et al., 2019], the authors considered a synchronization problem for balanced

digraphs where the dynamics of each agent are given by

ẋi = f(xi, t) + ui (2.66)

for all i ∈ V and xi,ui ∈ R. Compared with the general form given by (2.2) the system in

(2.66) has n = m = 1, A = 0, B = 1. In this case, the LMI given by (2.31) is equivalent

to τ, µ, P > 0 and −2τ + µl + µ−1lP 2 < 0. By choosing P = 1 and µ = 1 any τ > l

will satisfy the LMI. Since the digraph is balanced, a(L) = λ2(Ls), where Ls is defined

in Definition 1. Furthermore, by taking c = τ/a(L) = τ/λ2(Ls) > l/λ2(Ls) so as to

satisfy Algorithm 2.2, this choice of c also satisfies the gain condition given by Theorem

1 in [Hung et al., 2019]. Substituting the above parameters in H2 given by (2.38) and in

F2 given by (2.63) we obtain H2 = 2(cλ2(Ls) − l)IN and F2 = cL. Inserting the above

parameters in (2.62) we obtain

r2 = c‖L‖
√
Ncl/(cλ2(Ls)− l), (2.67)

which is identical to the bound given by Corollary 1 in [Hung et al., 2019]). Notice that

the coupling gain c in (2.67) plays the same role as k in [Hung et al., 2019].

2.7 Simulation examples

This section illustrates the performance of the proposed ETC mechanism using computer

simulations. We consider a network of six agents whose topology is modeled by the

digraph illustrated in Fig.2.5. Let xi = [xi,1, xi,2, xi,3, xi,4]T ∈ R4 be the state of agent i.
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The dynamics of each agent are given by (2.2) with

A =


0 1 0 0
-2 -1 2 0
0 0 0 2

1.95 0 -1.95 0

 , B =
[
0 1 0 0

]T
,

and f(xi, t) = [0 0 0 -0.333 sin(xi3)]T. Therefore, the corresponding globally Lipchitz

constant for f(·) is l = 0.333. Running Algorithm 2.2 using the CVX tool box ( [Grant

and Boyd, 2014]), we obtain c = 2251 and K = [-0.0470, -0.0134, 0.0285, -0.0224].

For the threshold functions, we set hi(t) = c0 + c1e
−c2t for all i ∈ V := {1, ..., 6}, with

c0 = 1e-3, c1 = 5, and c2 = 1.

1

2 3

4

6 5

Figure 2.5: Example. Network topology

Fig.2.6 and Fig.2.7 show the simulation results with the ETC mechanism using the control

law given by (2.23). It can be observed in Fig.2.6 that the states of all agents are synchro-

nized asymptotically, i.e. the agents’ states reach consensus and evolve along a common

trajectory. Fig.2.7 shows that the agents broadcast their states at discrete time instants

for which the estimation errors ‖ei(t)‖ hit the triggering threshold functions hi(t); i ∈ V .

The minimum inter-event time and the number of broadcast events for each agent during

the simulation period are shown in Table 2.1.

Table 2.1: Minimum inter-event times and number of events

Agent i min{ti,k+1 − ti,k}(s) Total number of events

i = 1 0.029 42
i = 2 0.117 16
i = 3 2.103 4
i = 4 0.189 15
i = 5 0.081 15
i = 6 0.854 5

Fig.2.8 shows the trajectory of the synchronization error with continuous communications

(C-C), and with the ETC mechanism using controllers (2.23) and (2.61). According to
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Figure 2.6: ETC mechanism with controller (2.23). Synchronization of agents’ states.

Theorem 2.1, using controller (2.23) the asymptotic bound for the synchronization error

is computed using (2.36) as r1 = 0.1102. Using controller (2.61), the asymptotic bound is

computed using (2.62) as r2 = 0.2139. The figure clearly shows that asymptotically, the

synchronization error is upper bounded by the asymptotic bounds. Recall that the asymp-

totic bounds can be made arbitrarily small by tuning the lower bound on the threshold

functions. Hence, the synchronization error would get closer to zero if c0, the lower bound

of the triggering function were reduced. This also would make the synchronization error

closer to that obtained using continuous communications. However, this would potentially
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0 2 4 6 8 10

t[s]

t i
,k

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

(a)

(b)

Figure 2.7: ETC mechanism with controller (2.23). (a) Sequence of broadcast time instants
for each agent. (b) Evolution of the estimation errors ‖ei(t)‖ and the threshold
triggering functions hi(t), i = 1, ..., 6.

make communications among the agents more frequent.
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Figure 2.8: Example. Trajectories of the synchronization error ‖ξ‖ and asymptotic bounds
with different communication mechanisms.

2.8 Conclusions

This chapter described a general event triggered communication framework for consen-

sus/synchronization of nonlinear multi-agent systems. The considered agent’s dynamics

and the network topology are general enough for a large number of applications. We

showed how consensus and synchronization can be achieved and how the communications

among agents can be reduced by using the proposed event triggered communication mech-

anism. Further, the minimum inter-event time for every agent was shown to be strictly

positive, thus excluding the occurrence of Zeno behavior.
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3.1 Literature review

In this chapter, we present a solution to the problem of multiple vehicle cooperative

path following (CPF) that takes explicitly into account vehicle input constraints, the

topology of the inter-vehicle communication network, and time-varying communication

delays. The objective is to steer a group of vehicles along given spatial paths, at speeds

that may be path dependent, while holding a feasible geometric formation. The solu-

tion involves decoupling the original CPF problem into two sub-problems: i) single path

following of input-constrained vehicles and ii) coordination of an input-constrained multi-

agent system (MAS). The first is solved by adopting a sampled-data model predictive

control (MPC) scheme, whereas the latter is tackled using a novel distributed control law

with an event triggered communication (ETC) mechanism. The proposed strategy yields

a closed-loop CPF system that is input-to-state-stable (ISS) with respect to the system’s

state (consisting of the path following error of all vehicles and their coordination errors)

and the system’s input, which includes triggering thresholds for ETC communications and

communication delays. Furthermore, with the proposed ETC mechanism, the number of

communications among the vehicles are significantly reduced.

3.1 Literature review

Cooperative path following, an important class of multiple vehicle formation control, is

defined as the problem of steering a group of vehicles along a set of spatial paths, at speeds

that may be path dependent, while holding a feasible geometric pattern. Among a myriad

of applications related to CPF, we single out those involving unmanned aerial vehicles

(UAVs) for coastal monitoring, [Klemas, 2015, Kaminer et al., 2017] and autonomous

marine vehicles (AMVs) for marine habitat mapping and geo-technical surveying [Abreu

et al., 2016b].

From a control design and analysis standpoint, CPF may be viewed as exhibiting a two-

layer control structure: the lower layer, called path following, is in charge of making a

group of vehicles converge to a set of desired paths parametrized in an appropriately

normalized manner, while the upper layer, referred to as networked MAS coordination

layer, has the goal of synchronizing the path parameters and making them evolve at

the same normalized desired speed profile along the paths. Under these circumstances,

proper path parametrization will ensure that the vehicles will reach a desired formation

with the assigned individual speed profiles compatible with the paths and the formation

(see [Ghabcheloo et al., 2009,Almeida et al., 2012] for an introduction to these concepts).

Using this set-up, different approaches to the CPF problem have been proposed in the
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literature. A simple categorization of the methods used is presented in Table 3.1.

Most approaches assume that the vehicles’ inputs (e.g. speed and heading rate in the case

of planar kinematic model) are unconstrained. This assumption allows designers to use a

wide range of classical nonlinear control methods such as Lyapunov based techniques to

design controllers for path following, while the coordination problem is tackled by resorting

to tools from network control theory for unconstrained MAS, see for example [Olfati-Saber

et al., 2007] for a comprehensive introduction to consensus algorithms and their applica-

tions to cooperative control. However, in practice the inputs of the vehicles are always

saturated at certain levels due to intrinsically physical limitations. As a consequence,

controllers designed for unconstrained vehicles may fail to yield adequate performance.

Even worse, stability of the resulting closed loop systems may be seriously compromised

if the vehicle constraints are not taken directly into account during the design process.

Due to its ability to handle explicitly input constraints, Model Predictive Control has

recently been proposed as a key enabling tool for the solution of CPF problems, see for

example [Rucco et al., 2015,Alessandretti and Aguiar, 2017]. In [Rucco et al., 2015], the

authors propose an MPC scheme to solve the path following problem, while the coordina-

tion problem is solved using a classical consensus law. However, the approach in [Rucco

et al., 2015] has two limitations. Firstly, the MPC scheme is designed based on a lin-

earization of the path following error system, which implies that stability of the resulting

system is only guaranteed locally. In addition, with the consensus law used in [Rucco

et al., 2015] there is no guarantee that the total speed assigned to each vehicle, which

is the summation of the nominal desired speed and the correction speed issued by the

consensus law satisfy the vehicle’s speed constraint. In [Alessandretti and Aguiar, 2017],

the authors address the CPF problem using a distributed MPC framework. However,

the methodology adopted requires that the speed of vehicles be allowed to be negative, a

constraint that is practically impossible to meet for some classes of autonomous vehicles

such as fixed-wing UAVs or acrshortamvs.

Another factor that plays a key role in the design of CPF control systems stems from the

limitations naturally imposed by the requirement that the agents exchange data over a

given communication network. From a purely theoretical standpoint, it is common in the

literature to assume that communications occur continuously in time. In this situation,

each vehicle has permanent access to the information provided by its neighbors to include

it in some form of consensus law. In practice, however this assumption is clearly vio-

lated, namely in applications where communication networks exhibit low bandwidth and

non-negligible transmission latency. To cope with this situation, it is crucial to explicitly
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incorporate in the design process the fact that communications do not take place contin-

uously. A possible solution is to consider periodic communications, with the latter taking

place at discrete instants of time only [Almeida et al., 2012]. Recently, with the objective

of further reducing the rate of inter-agent communications in cooperative MAS control,

event-triggered communications have come to the fore. Representative examples include

the work in [Aguiar and Pascoal, 2007] and [Rego et al., 2019a] on CPF that exploit the

concept of logic-based communications advanced in [Xu and Hespanha, 2004] and that

in [Jain et al., 2018], which builds upon an ETC mechanism introduced in [Fan et al.,

2015]. Temporary communication losses are taken into account in [Ghabcheloo et al.,

2009,Cichella et al., 2015] but only for the case when communications occur continuously.

Table 3.1: CPF categories

Categories Literature

Vehicle inputs

Unconstrained [Jain et al., 2018,Almeida et al., 2012]
[Aguiar and Pascoal, 2007,Ghabcheloo et al., 2009]
[Kaminer et al., 2017]

Constrained [Rucco et al., 2015,Alessandretti and Aguiar, 2017]

Comm.

Continuous [Ghabcheloo et al., 2009,Cao et al., 2017]
[Klausen et al., 2015,Cichella et al., 2015]
[Kaminer et al., 2017]

Periodic [Almeida et al., 2012]
Event-based [Jain et al., 2018,Aguiar and Pascoal, 2007]

[Rego et al., 2019a]

Speed profile
Constant [Jain et al., 2018,Kaminer et al., 2017]
Path dependent [Ghabcheloo et al., 2009,Rego et al., 2019a]

[Kaminer et al., 2017]

An important issue in the design of CPF systems is the parametrization of the paths

to be followed and the specification of the desired, identical rate of evolution of the path

parameters, which can be viewed as a desired normalized speed profile for the agents

involved to track. If the desired speed is constant, the coordination problem can be cast

in the form of a linear MAS consensus problem [Jain et al., 2018] whereas if the speed

is parameterized as a general function of the path parameters (i.e. path dependent),

the resulting coordination problem is equivalent to a consensus problem of nonlinear

MAS [Ghabcheloo et al., 2009, Rego et al., 2019a]. However, none of methods described

in the literature addresses the problem of coordination of nonlinear MAS with input

constraints that arises naturally in the context of CPF.
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Motivated by the above considerations, this chapter proposes a CPF control strategy that

takes explicitly into account realistic constraints on the vehicles’ inputs, the topology of

the inter-vehicle communications network, and communication delays. Specifically, the

main contributions of this chapter include the following:

(i) At the path following level, we develop an MPC scheme for path following that takes

into account explicitly the fact that in a large number of applications the vehicle’s

linear speed is strictly positive. When compared with existing MPC-based methods

(see for example [Rucco et al., 2015,Alessandretti and Aguiar, 2017]), the proposed

MPC scheme has the advantage of avoiding the construction of a terminal set, thus

yielding a global region of attraction for single vehicle path following.

(ii) At the coordination level, we propose a novel distributed control strategy for the

coordination of nonlinear MAS where the agents’ input constraints are explicitly

taken into account. We also propose an ETC mechanism that is not only capable

of reducing the frequency of communications among vehicles but is also robust with

respect to time-varying communication delays, making the scheme attractive for

scalable networks with limited communication bandwidth. This result is applicable

in the context of CPF for multiple autonomous vehicles, and also in many other ap-

plications involving the coordination/synchronization/consensus of nonlinear MAS

with input constraints.

3.2 Problem formulation

For simplicity of exposition we consider motions in 2D. In what follows, {I} = {xI , yI}
denotes an inertial frame and {B}[i] = {x[i]

B , y
[i]
B } denotes a body frame attached to vehicle

i. We consider a set of N ≥ 2 vehicles and the corresponding set of N spatial paths that

they are required to follow, described by

{P [i] : γ[i] → p
[i]
d (γ[i]) ∈ R2; i ∈ N}, (3.1)

where N , {1, ..., N} denotes the set of vehicles, γ[i] is the variable parameterizing path i,

p
[i]
d (γ[i]) = [x

[i]
d (γ[i]), y

[i]
d (γ[i])]T; i ∈ N is the position vector of a generic point on the path

i expressed in the inertial frame. Let p[i] = [x[i], y[i]]T; i ∈ N be the position vector of

the center of mass of vehicle i expressed in the inertial frame. Assuming that the vehicles
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have negligible sway speed, their kinematic models are given by

ẋ[i] = u[i] cosψ[i], ẏ[i] = u[i] sinψ[i], ψ̇[i] = r[i], (3.2)

where u[i], ψ[i], r[i]; i ∈ N denote the speed, yaw angle, and yaw rate of vehicle i, respec-

tively. Due to physical limitations of the vehicles, we consider that the speed and the

heading rate are constrained, i.e. (u[i], r[i]) ∈ U[i], for all i ∈ N , where U[i] is referred as

an input constraint set for vehicle i, defined explicitly as

U[i] , {(u[i], r[i]) : u
[i]
min ≤ u[i] ≤ u[i]

max, |r[i]| ≤ r[i]
max}. (3.3)

Here, u
[i]
min > 0 and u

[i]
max are lower and upper bounds on the speed, respectively, and r

[i]
max

is an upper bound on the heading rate.

We note that the kinematics model (3.2) is adequate for a large class of vehicles that

include mobile robots [Lapierre et al., 2006], fixed-wing UAVs undergoing planar mo-

tion [Rucco et al., 2015], and a wide class of under-actuated acrshortamvs such as Medusa

and Delfim [Abreu et al., 2016c]or Charlie [Bibuli et al., 2009], for which the sway speed

is in practice so small that it can be neglected. A similar kinematic model with a drift

term can be found in [Hung et al., 2018] for the case where the motion is disturbed by

constant wind (for AUVs) or constant ocean current (for acrshortamvs). In addition, it is

important to remark that in the present work we require the speeds of the vehicles to be

non-negative. This is due to the fact that for many autonomous vehicles such as marine

robots and fixed-wing UAVs, it is very difficult or even impossible to control the vehi-

cle moving backwards. This strict constraint makes the CPF problem more challenging

when compared to the case where this type of constraint is not taken into account, as

in [Alessandretti and Aguiar, 2017].

In cooperative path following, vehicle i is assigned path i to follow, see the illustration

in Fig.3.1. We consider a scenario where the fleet of vehicles are not only required to

follow their assigned paths but also to converge to and maintain a desired geometric for-

mation, while maneuvering with desired speed profiles along the paths in a manner that is

compatible with the formation. To solve the constrained CPF problem, the methodology

used in this chapter decouples the constrained CPF problem into two sub-problems: path

following of constrained vehicles to steer the vehicles to converge to their assigned paths

and coordination of constrained MAS that requires the vehicles to exchange information

regarding their progression along the paths (as measured by their path parameters) and
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(synchronize the path parameters 
to reach formation)

Figure 3.1: Illustration of cooperative path following.

negotiate their speeds to reach the desired formation. Using this set-up, we show that in

order to control a fleet of vehicles with a desired formation, the vehicles need to exchange

very limited information; in this case, a simple scalar path-related parameter that will be

used for coordination. From a communication and practical implementation perspective,

this is an advantageous feature of the proposed CPF when compared with other forma-

tion approaches such as distributed MPC that normally requires more information to be

exchanged among the vehicles, see for example [Dunbar and Murray, 2006, Muller et al.,

2011].

3.2.1 Single path following of constrained vehicles

In this subsection, we formulate the problem of single vehicle constrained path following

to make a vehicle converge to a path, while ensuring that the speed of the corresponding

path parameter tracks a desired speed profile. To this end, we exploit the concept of

“tracking a virtual reference” introduced in [Lapierre et al., 2006]. Because in this section

we deal with a single vehicle, for the sake of simplicity we drop the superscript [i] in the

variables in equations (3.1)–(3.3). Later, in subsequent sections, we will re-introduce the

original notation when necessary.

Consider the path following problem for a single vehicle with the kinematics model given

by (3.2), subject to the constraints on the inputs given by (3.3), following a path pa-

rameterized by the variable γ given by (3.1). Consider a Parallel Transport frame

{P} = {xP , yP} with its origin at an arbitrary point P on the path and its axes de-
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fined as follows: xP is aligned with the tangent to the path and points in the direction

of increasing path length and yP is determined by rotating xP 90 degrees clock wise (see

Fig.3.2). In the set-up adopted for path-following, the Parallel Transport frame moves

along the path in a manner to be determined and plays the role of a “virtual reference”

for both the position and heading angle that the vehicle must track to achieve good path

following. We define

Figure 3.2: Vehicle and reference frames. Velocity vector in the body frame v = [u, 0]. Q
is the center of mass of the vehicle and P is the origin of the Parallel Transport
Frame at a point on the path.

RPI (ψP) =

[
cos(ψP) sin(ψP)
− sin(ψP) cos(ψP)

]
(3.4)

as the rotation matrix from the {I} to the {P}. Let eP = [ex, ey]
T be the position error

between the vehicle and the virtual reference, expressed in the Parallel Transport frame,

computed as

eP = RPI (ψP)(p− pd). (3.5)

Note that RPI (ψP) = [RIP(ψP)]T. Taking time derivative of (3.5) then applying Lemma

A.1 in Appendix A yields

ėP = [ṘIP(ψP)]T(p− pd) +RPI (ψP)(ṗ− ṗd)

= −S(ωP)eP +RPI (ψP)ṗ−RPI (ψP)ṗd,
(3.6)

where S(ωP) ∈ R2×2 is a skew symmetric matrix and ωP ∈ R2 is the angular velocity

vector of P respect to {I}, expressed in {P}, given by

ωP =

[
ψ̇P
0

]
=

[
κ(γ)uP

0

]
(3.7)
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with uP is the inertial speed of the reference point P , expressed in {P} and κ(γ) is the

singed curvature of the path at P , given by

uP = γ̇‖p′d(γ)‖, κ(γ) =
x′d(γ)y′′d(γ)− x′′d(γ)y′d(γ)

‖p′d(γ)‖3 . (3.8)

Notice that if γ is the arc-length of the path then ‖p′d(γ)‖ = 1. In this case, uP = γ̇, i.e.

the speed of the virtual reference equals to the rate of change of the path length. Define

eψ , ψ − ψP (3.9)

as the orientation error between the vehicle’s heading and the tangent of the path at P ,

from which it follows that

RPI (ψP)ṗ
(3.2),(3.4)

=

[
u cos(eψ)
u sin(eψ)

]
. (3.10)

Further, let vP , [uP , 0]T ∈ R2 be the velocity vector of P respect to {I}, expressed in

{P}, that is,

RPI (ψP)ṗd = vP . (3.11)

Substituting (3.10) and (3.11) in (3.6) yields the dynamics of the position error as

ėP = −S(ωP)eP +

[
u cos(eψ)
u sin(eψ)

]
−
[
uP
0

]
. (3.12)

Furthermore, from (3.9) the dynamics of the orientation error are given by

ėψ
(3.2),(3.7)

= r − κ(γ)uP . (3.13)

Collectively, defining x = [eT
P , eψ]T ∈ R3 as the path following error vector, its dynamics

are given by

ẋ = f(x,u)
(3.12),(3.13)

=

−g(γ)vγ(1− κ(γ)ey) + u cos(eψ)
−κ(γ)g(γ)vγex + u sin(eψ)

r − κ(γ)g(γ)vγ

 , (3.14)
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where g(γ) , ‖p′d(γ)‖ and vγ , γ̇ is the speed of the path parameter that gives an extra

degree of freedom in the process of designing path following controllers and u , [u, vγ, r]
T

is the input vector of the path following error system.

Notice that we have introduced a new input vγ to control the evolution of the path

parameter γ. Later, for the purpose of designing an input constrained path following

controller, vγ should lie in a constraint set Uv, defined explicitly as

Uv , {vγ : |vγ| ≤ vmax}, (3.15)

where vmax is a design parameter that will be specified.

We are now in a position to formulate the following constrained path following problem.

Problem 3.1 (Constrained Path Following). Given a spatial path P parameterized by

γ, a desired positive and bounded speed profile vd : γ → vd(γ), and the constraint sets

for the vehicle’s inputs and the speed of the “virtual reference” given by (3.3) and (3.15)

respectively, derive a feedback control law for (u, r) ∈ U and vγ ∈ Uv to fulfill the following

tasks:

• Geometric task: drive the path following error x with the dynamics described in

(3.14) to zero as t→∞.

• Dynamic task: ensure also that vγ tracks the desired speed profile vd(γ), that is,

vγ(t)− vd(γ(t))→ 0 as t→∞.

Stated intuitively, a solution to the input-constrained path following problem consists

of adjusting the speed vγ of the “virtual reference”, the speed u, and the heading rate r of

the vehicle, subject to given vehicle constraints, to drive the vehicle to the path and keep

its velocity vector aligned with the tangent to the path while having the path parameter

track the desired speed profile.

Remark 3.1. If γ is the arc length of the path, then g(γ) ≡ 1. In this case, the

path following error system (3.14) resembles the path following error system developed

in [Lapierre et al., 2006]. Notice that although parameterizing a path by its arc-length

is convenient, the main problem is that it is not always possible to find a closed form

expression of the curvature as the function of the arc-length; elliptical and sinusoid paths
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are examples. In our set-up, the path parameter γ in (3.14) is not necessarily the arc

length, thus making the formulation applicable to any path.

Remark 3.2. Since the path parameter γ is not necessarily the arc-length, in general vγ

is not the speed of the “virtual reference” in the inertial frame. In fact, the latter equals

g(γ)vγ. Obviously, if γ is the arc-length of the path, then g(γ) ≡ 1 and vγ is truly the

speed of the “virtual reference” in the inertial frame.

3.2.2 Cooperative path following

Before proceeding with the formulation of the multiple vehicle coordination problem, we

make the following assumptions.

Assumption 1.

A1.1 Each vehicle is equipped with a path following controller (to be designed later using

an MPC scheme) that solves Problem 3.1 , where the desired speed profile vd(·)

for γ̇i; i ∈ N along the paths is identical for all vehicles.

A1.2 The inter-vehicle network topology is time invariant.

In what follows, we assume that the paths that the vehicles must follow are appropri-

ately parameterized to ensure that a given formation is reached when the path parameters,

also called coordination states, are equal. For example, to make a number of vehicles fol-

low an equal number of concentric circumferences and be aligned radially along their

radii, it suffices to parametrize these paths in terms of their normalized lengths, that is,

γ[i] = s[i]/2π, where s[i] is the curvilinear abscissa along path i. Clearly, the vehicles

are coordinated and maneuver with a desired normalized path dependent speed vd(·) if

γ[i](t) = γ[j](t) and γ̇[i](t) = γ̇[j](t) = vd(γ[i]) for all i, j ∈ N . See [Ghabcheloo et al., 2009]

for an introduction to these concepts.

The underlying idea to achieve the coordination is described as follows. Assume for the

time being that the vehicles maneuver independently and do not attempt to coordinate

their motions. Assume that the path following controller makes each vehicle i converge to

the path asymptotically (x[i] = 0) and ensures also that the path parameter evolves with

the desired speed profile, that is, v
[i]
γ = vd(γ[i]). Asymptotically, in this ideal situation we

have

γ̇[i] = v[i]
γ = vd(γ[i]); i ∈ N . (3.16)
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Replacing v
[i]
γ = vd(γ[i]) and x[i] = 0 in (3.14), and noticing that x[i] = 0 is the equilibrium

point of the path following system (3.14), the nominal inertial speeds of the vehicles are

given by

u[i] = g[i](γ[i])vd(γ[i]); i ∈ N . (3.17)

Recall that the desired formation is only achieved when the path parameters reach con-

sensus (or synchronized), that is, γ[i] = γ[j] for all i, j ∈ N . This can be accomplished by

adjusting the linear speeds of vehicles about the nominal speeds in (3.17) so as to make all

vehicles reach agreement in the coordination states (the path parameters) and maneuver

with the common normalized desired speed vd(·). Let g[i](γ[i])v
[i]
c be the a correction term

for the speed of vehicle i, where v
[i]
c is a new input aimed at achieving coordination, to be

explained later. The resulting speeds for the vehicles are given by

u[i] = g[i](γ[i])(vd(γ[i]) + v[i]
c ); i ∈ N . (3.18)

Consequently, the dynamics of the path parameters in (3.16) are now extended as

γ̇[i] = vd(γ[i]) + v[i]
c ; i ∈ N . (3.19)

At this stage, it is clear that the coordination problem is reduced to finding v
[i]
c ; i ∈ N

such that the total speed of each vehicle in (3.18) still satisfies (3.3), that is,

u
[i]
min ≤ g[i](γ[i])(vd(γ[i]) + v[i]

c ) ≤ u[i]
max; i ∈ N , (3.20)

and the path parameters are synchronized and evolve with the common speed profile

vd(·). To solve this consensus problem, each vehicle needs to exchange the path parame-

ters (called coordination states) with other vehicles. In this work, we consider that each

vehicle is capable of communicating bidirectionally with a set of neighboring vehicles. Let

G be the bidirectional (undirected) graph induced by the interconnection network of the

vehicles and N [i] the set of neighboring vehicles of vehicle i. At the coordination layer,

we consider each vehicle to be an agent whose dynamics are given by (3.19). We are now

in a position to formulate the coordination problem as follows.

Problem 3.2 (Coordination of input-constrained MAS). Given a MAS with the dynam-

ics of each agent given by (3.19) and the network topology of the MAS modeled by the graph
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G satisfying Assumption 1, derive a distributed control law for the input v
[i]
c (γ[i], γ[j]); j ∈

N [i], subject to the input constraint (3.20), such that (γ[i](t) = γ[j](t));∀i, j ∈ N and

(γ̇[i](t) = vd(γ[i](t)));∀i ∈ N as t→∞.

Note that since the function vd(·) is common for all agents, reaching consensus in the

path parameters and their speeds implies that v
[i]
c converges to zero for all i ∈ N . In the

next section, the process of designing controllers to solve the problems defined above shall

be illustrated.

3.3 Controller design and main results

Based on the idea of decoupling the constrained CPF problem into the subproblem of

path following and MAS coordination, we propose a distributed CPF control system that,

for each vehicle, exhibits the architecture depicted in Fig.3.3. The objective of the “Co-

ordination with ETC Mechanism” block is to compute the correction speed v
[i]
c . An ETC

mechanism is proposed to reduce communications among vehicles so that they will only

communicate with its neighbors when found necessary, according to some specific crite-

rion. Once the correction speed has been computed, the MPC controller is used to make

the vehicle converge to and follow its assigned path. In other words, the MPC controller

is used to stabilize the path following error between the vehicle and its assigned path.

To make the constrained CPF problem solvable, we assume that given the vehicles’ input

constraints, the planed paths given in (3.1) and the desired speed profile vd(·) are smooth

and satisfy the following conditions.

Condition 3.1.

C1.1 vd(·) is bounded, i.e. 0 < vdmin ≤ vd(·) ≤ vdmax.

C1.2 Condition on the linear speeds:

There exists a constant cu > 0 such that u
[i]
min + cu ≤ g[i](γ[i])vd(γ[i]) ≤ u

[i]
max − cu for

all γ[i] and i ∈ N .

C1.3 Condition on the turning rates:

There exists a constant cr such that |κ[i](γ[i])g[i](γ[i])vd(γ[i])| < r
[i]
max − cr for all γ[i]

and i ∈ N .
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MPC-PF
Controller

Coordination with ETC
 Mechanism

Vehicle

Path

Figure 3.3: CPF control system for vehicle ith with the ETC mechanism.

Remark 3.3. The above conditions are necessary to ensure that the CPF problem is

solvable. To see this, notice in C1.2 that the term g[i](γ[i])vd(γ[i]) is the nominal desired

linear speed, computed in the inertial frame, that vehicle i must track, see (3.17). There-

fore, cu gives room for the vehicles to adjust their linear speeds about the nominal ones

in order to achieve coordination, see (3.18). Similarly, in C1.3, the left hand side of the

inequality is the nominal desired heading rate of vehicle i. Hence, cr gives room for the

vehicles to adjust their heading rates about the nominal ones in order to converge to and

follow their assigned paths.

Example 3.1. For paths consisting of straight lines and segments of circumferences, such

as lawn mowing paths, the above conditions can be significantly simplified. For example,

for straight-line paths, if the paths are parameterized by their arc-lengths, then g[i](γ[i]) ≡

1 for all i ∈ N . Hence, condition C1.3 can be relaxed and C1.2 is equivalent with u
[i]
min +

cu ≤ vd(γ[i]) ≤ u
[i]
max − cu for all i ∈ N . In this case cu can be simply specified as

cu = min{vdmin − u[i]
min, u

[i]
max − vdmax} for all i ∈ N .

In the following subsection we shall propose distributed control laws with different

communication scenarios to update the correction speed v
[i]
c , i ∈ N .
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3.3.1 Distributed controllers with an ETC mechanism for the

coordination problem

Before introducing distributed control laws to solve the coordination problem (Problem

3.2 ), we define new variables given by

z[i] ,
∫ γ[i]

0

1

vd(γ)
dγ, i ∈ N . (3.21)

Intuitively, z[i] measures the amount of time taken by agent i to travel from 0 to the

state γ[i]. With the above definition, and since vd(γ) > 0 for all γ, it follows that the path

parameters γ[i]; i ∈ N are synchronized (or reach consensus), i.e. γ[i] = γ[j] for all i, j ∈ N
iff the variables z[i]; i ∈ N are synchronized, i.e. z[i] = z[j] for all i, j ∈ N . For the sake of

convenience, let z = [z[1], z[2], ..., z[N ]]T ∈ RN and z̄ = 1
N

∑N
i=1 z

[i] be the average of z. We

define the coordination error vector

ξ = z− z̄1 = Wz, (3.22)

where W = IN −11T/N . Clearly, if the variables z[i]; i ∈ N reach consensus, then z spans

1. Further, since W1 = 0, the variables z[i]; i ∈ N reach consensus iff ξ = 0. Thus,

the problem of driving the variables z[i]; i ∈ N to reach consensus amounts to driving

the coordination error vector ξ to the origin. For this reason, in what follows we propose

distributed control laws for v
[i]
c for all i ∈ N under different communication scenarios to

drive the error vector ξ to zero.

Remark 3.4. Notice that the matrix W is similar to the projection matrix Πξ defined

in [Kaminer et al., 2017], which is popularly used for analyzing consensus of multi agent

systems on undirected graphs. The variable z[i] defined in (3.21) generalizes the coordina-

tion state ξi given in [Kaminer et al., 2017], where the paths are parameterized by their

arc-lengths.

Continuous communications

For clarity of presentation of the concepts involved, we start by assuming that communi-

cations take place instantaneously and continuously.
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Theorem 3.1 (Coordination with continuous communications). Consider Problem

3.2 . Let Condition 3.1 hold for all i ∈ N and let G be an undirected and connected graph.

Then, the distributed control law for v
[i]
c ; i ∈ N given by

v[i]
c = −k[i]

c tanh(
∑

j∈N [i] z[i] − z[j]); i ∈ N , (3.23)

where z[i] is given by (3.21) and k
[i]
c are positive gains satisfying the conditions

0 < k[i]
c ≤ cu/g

[i]
max; i ∈ N ,

g[i]
max = max(g[i](γ[i]))

(3.24)

drives all the agents’ states (path parameters) to reach consensus asymptotically. In other

words, the origin of the coordination error vector ξ is globally asymptotically stable.

Proof: See section 3.7.3.

The next corollary applies to the special case where the desired speed profile vd(·) is

constant.

Corollary 3.1. Consider Problem 3.2 and let the conditions stated in Theorem 3.1

hold. Further assume that the speed profile is constant, i.e. vd(γ[i]) ≡ c > 0 for all i ∈ N .

Then, the distributed control law for v
[i]
c ; i ∈ N given by

v[i]
c = −k[i]

c tanh(
∑

j∈N [i] γ[i] − γ[j]); i ∈ N , (3.25)

where k
[i]
c satisfies (3.24), drives all the agents’ states (path parameters) to reach consensus

asymptotically.

It is interesting to observe that in the case of a constant speed profile, the distributed

control law does not depend on the desired speed profiles vd(·). Further, it follows from

(3.25) that the computation of v
[i]
c is simplified because there is no need for a block of

integrators to compute z[i].
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ETC mechanism without communication delays

The distributed control law proposed in subsection 3.3.1 relies on continuous commu-

nications among the vehicles. However, this assumption is impossible to meet because

practical communication systems require the exchange of data to take place at discrete

instants of time. Motivated by this observation, we propose an event triggered communi-

cation mechanism in which the vehicles only need to exchange data with their neighbors

when necessary, in accordance with an appropriately defined criterion.

In the ETC mechanism, instead of using the true neighboring states (γ[j]; j ∈ N [i]), the

control law (3.23) uses their estimates. Following the concepts explained in the previous

chapter, the underlying idea is that if any agent can produce “good” estimates of the

neighboring states, then there is no need to communicate continuously among the vehi-

cles. Let γ̂[ij] be an estimate of γ[j] computed by agent i (the procedure to compute this

estimate will be explained later). The event triggered distributed control law that we

propose is given by

v[i]
c = −k[i]

c tanh
(∑

j∈N [i](z[i] − ẑ[ij])
)

; i ∈ N , (3.26)

where

ẑ[ij] ,
∫ γ̂[ij]

0

1

vd(γ)
dγ, (3.27)

and k
[i]
c satisfies condition (3.24) for all i ∈ N .

The control law in (3.26) can be rewritten as

v[i]
c = −k[i]

c tanh
(∑

j∈N [i](z[i] − z[j] + e[j])
)

; i ∈ N , (3.28)

where,

e[j] = z[j] − ẑ[ij] =
∫ γ[j]
γ̂[ij]

1
vd(γ)

dγ; j ∈ N [i], i ∈ N . (3.29)

Notice that vd(γ) is bounded below by vdmin, hence

|e[j](t)| ≤ |γ[j](t)− γ̂[ij](t)|/vdmin; j ∈ N [i], i ∈ N . (3.30)

It can be seen that compared with the control law for continuous communications in

(3.23), v
[i]
c in (3.28) has the contribution of the estimation error e[j]. The key idea in the
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proposed ETC mechanism is that if e[j]; j ∈ N [i], i ∈ N can be enforced to be bounded

then, as we will show later, the coordination error ξ will also be bounded. To bound e[j],

we define for every agent the variable γ̂[j]; j ∈ N as a “replica” of γ̂[ij]; i ∈ N [j]. Thus,

if we can enforce the estimation error γ̃[j] , γ[j] − γ̂[j] = γ[j] − γ̂[ij] to be bounded, then

from (3.30) e[j] will be bounded for all j ∈ N .

We now introduce a mechanism to synchronize γ̂[i] and γ̂[ji] for all i ∈ N and j ∈ N [i]

(note that because the graph is symmetric, this is similar to synchronizing γ̂[j] and γ̂[ij]

for all j ∈ N and i ∈ N [j]). Let {t[i]k }k∈N be the sequence of time instants at which vehicle

i sends its current value of γ[i](t
[i]
k ); k ∈ N to its neighbors j; j ∈ N [i]. Note that this

sequence will be defined by the ETC mechanism. During the interval T [i]
k , [t

[i]
k , t

[i]
k+1) we

propose the following estimator for γ̂[i]. For t ∈ T [i]
k :

˙̂γ[i](t) = vd(γ̂[i](t)), (3.31a)

γ̂[i](t
[i]
k ) = γ[i](t

[i]
k ); i ∈ N . (3.31b)

Equation (3.31b) implies that whenever agent i broadcasts γ[i] to its neighbors, the initial

condition for γ̂[i] will be reset. Similarly, let {t[ji]k }k∈N be the sequence of time instants at

which agent j; j ∈ N [i] receives the state of agent i. The estimator for γ̂[ji]; j ∈ N [i], i ∈ N
in the interval T [ji]

k , [t
[ji]
k , t

[ji]
k+1) is proposed as follows:

For t ∈ T [ji]
k :

˙̂γ[ji](t) = vd(γ̂[ji](t)), (3.32a)

γ̂[ji](t
[ji]
k ) = γ[i](t

[i]
k ); j ∈ N [i], i ∈ N . (3.32b)

Equation (3.32b) implies that whenever agent j receives the state of agent i, the initial

condition for γ̂[ji] will be reset.

Remark 3.5. The dynamics of the estimators for γ̂[i] and γ̂[ji], given by (3.31a) and

(3.32a), respectively, are motivated by the observation that once coordination is achieved,

γ[i] = γ[j] for all i, j ∈ N , v
[i]
c tends to zero for all i ∈ N , and all path parameters evolve

with the same speed profile vd(·). As a consequence, in this specific situation the estimators

truly represent the dynamics of the path parameters. See Fig.3.4 for an illustration of the

synchronization between γ̂[i] and γ̂[ji] for all i ∈ N and j ∈ N [i].

To ensure that the estimation error γ̃[i]; i ∈ N bounded, we allow agent i to transmit
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Figure 3.4: The ETC mechanism for the case of negligible delays; γ̂[i] and γ̂[ji] are synchro-
nized, i.e. γ̂[i](t) = γ̂[ji](t) for all t and j ∈ N [i], i ∈ N .

γ[i] whenever γ̃[i] hits a designed bounded threshold that, in general, can be parameterized

by a function of time that we call η[i](t). Formally, we define an event-triggering function

h[i](t) for the communication as

h[i](t) = |γ̃[i](t)| − η[i](t), (3.33)

where η[i](t) belongs to a class of non-negative functions C defined by C , {f : R≥0 →
R≥0|0 ≤ f(t) ≤ c̄} for all i ∈ N , where c̄ is a uniform upper bound for the function. For

example, η[i](t) = c1 + c2e
−αt with a proper choice of c1, c2 and α is a typical function

belonging to C. With the above definition, agent i; i ∈ N will send its state to its neighbors

whenever h[i](t) ≥ 0. Formally, the sequences {t[i]k }k∈N defining the time instants when

the vehicles broadcast their states are given by:

t
[i]
k+1 = inf{t ≥ t

[i]
k : h[i](t) ≥ 0} (3.34)

for all i ∈ N . In summary, with the proposed ETC mechanism the following results hold.

Lemma 3.1. Suppose there are no communication delays. In this case, the ETC mech-

anism will ensure that for all t and i ∈ N , j ∈ N [i]

i) γ̂[i](t) = γ̂[ji](t) and

ii) |γ̃[i](t)| = |γ[i](t)− γ̂[i](t)| = |γ[i](t)− γ̂[ji](t)| ≤ η[i](t).

Proof: See section 3.7.4

We show next that with the ETC mechanism proposed above, and in the absence of

communication delays, the coordination system satisfies an adequate ISS condition.

Theorem 3.2 (Coordination with ETC and without delays). Consider Problem 3.2

and let the conditions stated in Theorem 3.1 hold. Further, let the coordination system be
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driven by the proposed ETC mechanism and the distributed control law given in (3.26).

Then, the closed-loop coordination error system is (ISS) with respect to the state ξ and

the input η , [η[1], ..., η[N ]]T.

Proof: See section 3.7.5.

Remark 3.6. We refer the reader to Definition A.1 in Appendix A for the concept of

ISS systems. In plain terms, the result in Theorem 3.2 implies that: i) if the input η

is bounded then the state ξ is bounded and ii) if η(t) → 0 as t→∞, then ξ(t) → 0 as

t → ∞, see the convergent input-convergent state property of an ISS system in [Sontag,

2008].

Remark 3.7. The above ETC mechanism extends the event triggered mechanism for

single integrator MAS described in [Seyboth et al., 2013]. It also generalizes the triggering

condition in [Hung and Pascoal, 2018], where the threshold functions η[i] are constant for

all i ∈ N . Compared to [Hung and Pascoal, 2018], this gives more flexibility to reduce the

frequency of communications among the vehicles by customizing the triggering threshold

function η[i](t); i ∈ N .

Remark 3.8. Another concern with any event triggered control or communication mech-

anism is that if it must guarantee Zeno-free behavior. With the proposed ETC mechanism

proposed in this chapter, provided that the lower bound on the threshold function η[i] is

positive for all i ∈ N , then it can be shown that the minimum-inter event time for every

agent is strictly positive; which implies that Zeno behavior can be excluded. Intuitively,

this implies that if the lower bound of η[i] is positive then it always takes a period of time

for the estimation error |γ̃[i]| to reach the triggering threshold η[i], which is the condition

to generate a new event for communication. The proof of this property is lengthy and

involved. However, the proof can be done in a similar to that in Theorem 1 of [Hung

et al., 2019]. A similar proof can be found in Chapter 2 for the general MAS consen-

sus/synchronization problem.

Clearly, Theorem 3.1 is a special case of Theorem 3.2 when η[i](t) ≡ 0 for all i ∈ N .

That is, η[i](t) ≡ 0 implies that the triggering condition (3.33) is satisfied at all times,
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making the vehicles communicate continuously. To reduce the frequency of communi-

cations, the threshold functions η[i] can be designed such that they are not necessarily

identically equal to zero but η[i](t)→ 0 as t→∞; i ∈ N . Then, due to the ISS property,

the coordination error ξ will converge to zero as t → ∞. In this set-up, the triggering

threshold η[i] plays the role of a tunning knob to trade off performance of coordination

against the cost of communications.

ETC mechanism with communication delays

In this subsection we consider more realistic scenarios where the communication delays

are time varying and non-homogeneous. To handle communication delays, we modify

slightly the proposed ETC mechanism as follows:

Consider a generic agent i with neighbors j; j ∈ N [i]. We recall that t
[i]
k is the time at

which agent i broadcasts its state (γ[i](t
[i]
k )) to its neighbors and t

[ji]
k is the time at which

agent j receives that information. Notice that without delay, agent j would receive γ[i](t
[i]
k )

immediately, i.e. t
[ji]
k = t

[i]
k . We now consider the case when agent j can only receive the

message broadcast by agent i after a certain time delay denoted ∆
[ji]
k . This delay is not

known in advance but we assume it can be estimated by agent j. For example, if all agents

are equipped with synchronized clocks and, instead of sending only the coordination state

γ[i](t
[i]
k ), agent i also sends the tagged time t

[i]
k , then the time delay can be easily computed

as ∆
[ji]
k = t

[ji]
k − t

[i]
k . In general, we define the time delay signal as a function of time, as

follows:

∆
[ji]
k (t) =

{
t− t[i]k , if t

[i]
k ≤ t ≤ t

[ji]
k ,

0, otherwise.
(3.35)

Notice how with this definition ∆
[ji]
k (t

[ji]
k ) = t

[ji]
k −t

[i]
k . We now modify the ETC mechanism

proposed in previous section to make it robust against communication delays. To this

end, the estimator (3.32) is modified as follows.

For t ∈ T [ji]
k ,

˙̂γ[ji](t) = vd(γ̂[ji](t)), (3.36a)

γ̂[ji](t
[ji]
k ) = γ[i](t

[i]
k ) +

∫ t[ji]k

t
[i]
k

vd(γ̂[ji](τ))dτ. (3.36b)

These equations show that when agent j; j ∈ N [i] receives γ[i](t
[i]
k ) from agent i, γ̂[ji] is

reset to the initial value given by (3.36b). Compared to (3.32b), the last term in (3.36b)

acts as a “compensation” term for the estimate of γ̂[ji] in order to deal with the time delay
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∆
[ji]
k .

To see how the modified ETC mechanism is robust against delays, similarly to the case

without delays we examine the estimation error γ[i] − γ̂[ji] which, as we will see later,

contributes to the degradation in performance of the coordination error system. To this

end, we define η̄[i](t) , supτ∈[0,t] η
[i](τ) as the upper bound for η[i](τ) up to time t and

∆̄[i](t) , supτ∈[0,t]{∆
[ji]
k (τ); j ∈ N [i], t

[i]
k ∈ [0, t]} as the upper bound for the time delays

associated with the messages sent by agent i up to time t. We obtain the following result

for the estimation error.

Lemma 3.2. Consider the modified ETC mechanism with time-varying delays. Then, for

all t ≥ 0 and i ∈ N , j ∈ N [i]

|γ[i](t)− γ̂[ji](t)| ≤ η̄[i](t) + (vdmax − vdmin + kmax)∆̄[i](t), (3.37)

where kmax , maxi∈N k
[i]
c .

Proof: See section 3.7.6.

Let η̄ =col(η̄[i]) ∈ RN and ∆̄ =col(∆̄[i]) ∈ RN and define

σ = η̄ + (vdmax − vdmin + kmax)∆̄. (3.38)

We obtain the following result for coordination with communication delays.

Theorem 3.3 (ETC mechanism and communication delays). Consider Problem 3.2

and let the conditions stated in Theorem 3.1 hold. Let the coordination system be driven

by the modified ETC mechanism with the distributed control law given in (3.26). Then,

the closed-loop coordination error system is ISS with respect to the state ξ and the input

σ.

Proof: See section 3.7.7.

Clearly, the results stated in Theorem 3.3 generalize the results in Theorem 3.1 and

Theorem 3.2. The result in Theorem 3.2 is a special case of that of Theorem 3.3 when

the communication delays are zero, that is, ∆̄(t) ≡ 0. In this case, the coordination error

system is ISS respect to the input η̄. Furthermore, if both ∆̄(t) ≡ 0 and η̄(t) ≡ 0, then

σ ≡ 0. In this case, we recover the result of Theorem 3.1, that is, ξ = 0 is GAS.
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Remark 3.9. We notice that having synchronized clocks on the vehicles to compute time

delays is not a strong assumption. In fact, with current technology it is neither difficult

nor overly expensive to have synchronized clocks (with a drift of less than 200 ns in 24

hours) on-board of all the vehicles that are part of a formation. This solution was recently

implemented and tested in the scope of the EU WiMUST project [Kebkal et al., 2017].

3.3.2 MPC for constrained path following

Section 3.3.1 provided a solution to the computation of the correction speed v
[i]
c in order to

achieve coordination. With the correction speed, the total speeds assigned to the vehicles

are given by

u[i] = (vd(γ[i]) + v[i]
c )g[i](γ[i]); i ∈ N . (3.39)

As shown in the proof of Lemma 3.1, the reference speed for u[i], given by (3.39), satisfies

the constraint u
[i]
min ≤ u[i] ≤ u

[i]
max for all i ∈ N . Replacing the vehicle speed u in (3.14) by

(3.39) for vehicle i, the resulting path following error system for vehicle i is given by

ẋ[i] = f [i](x[i],u[i]) =


g[i](γ[i])

(
−v[i]

γ (1− κ[i](γ[i])e
[i]
y ) + (vd(γ[i]) + v

[i]
c ) cos(e

[i]
ψ )
)

g[i](γ[i])
(
−κ[i](γ[i])v

[i]
γ e

[i]
x + (v

[i]
d + v

[i]
c ) sin(e

[i]
ψ )
)

r[i] − κ[i](γ[i])g[i](γ[i])v
[i]
γ

, (3.40)

where u[i] = (v
[i]
γ , r[i]). It follows from (3.3) and (3.15) that u[i] is constrained to the set

U[i]
pf , {(v

[i]
γ , r

[i]) : |v[i]
γ | ≤ v[i]

max and |r[i]| ≤ r[i]
max}. (3.41)

We are now in a position to design an MPC scheme to drive the path following error

system (3.40) to zero subject to the input constraint set U[i]
pf defined by (3.41).

We define a finite horizon open loop optimal control problem (FOCP)

OCP(t,x[i](t), γ[i](t), v
[i]
c (t), Tp) that the sampled-data MPC must solve at every sampling

time as follows:

Definition 3.1. OCP(t,x[i](t), γ[i](t), v
[i]
c (t), Tp)

min
ū[i](·)

J [i]
(
x[i](t), γ[i](t), v[i]

c (t), ū[i](·)
)
,
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with

J [i] (·) ,
∫ t+Tp

t

l[i]
(
x̄[i](τ), γ[i](τ), v[i]

c (τ), ū[i](τ)
)

dτ

subject to

˙̄x
[i]

(τ) = f [i]
(
x̄[i](τ), ū[i](τ)

)
, τ ∈ [t, t+ Tp], (3.42a)

x̄[i](t) = x[i](t), (3.42b)

v̄
[i]
c (τ) = −k[i]

c tanh
(∑

j∈N [i] z̄[i](τ)− ¯̂z[ij](τ)
)
, (3.42c)

˙̄γ[i](τ) = v[i]
γ (τ), τ ∈ [t, t+ Tp] , γ̄[i](t) = γ[i](t), (3.42d)

˙̂̄γ[ij](τ) = vd(γ̂[ij](τ)), τ ∈ [t, t+ Tp] , (3.42e)

¯̂γ[ij](t) = γ̂[ij](t); j ∈ N [i], (3.42f)

ū[i](τ) ∈ U[i]
pf , τ ∈ [t, t+ Tp] , (3.42g)

∂V
∂x[i] f

[i](x[i](t), ū[i](t)) ≤ ∂V
∂x[i] f

[i](x[i](t),un(x[i](t))). (3.42h)

In the constraint equations (3.42), the variables with bar denote predicted variables,

to distinguish them from the real variables without a bar. Specifically, x̄[i](τ) is the

predicted trajectory of the path following error which is computed using the dynamic

model (3.40) and the initial conditions (3.42b); γ̄[i](τ) is the predicted value of the path

parameter γ[i] driven by the path following input ū[i](τ); ¯̂γ[ij] is the prediction of the

state of neighboring agent j; j ∈ N [i] by using the estimator (3.36) over the prediction

horizon Tp; z̄[i] and ¯̂z[ij] are computed using (3.21), (3.27) with predicted γ̄[i] and ¯̂γ[ij],

respectively. The constraint (3.42h) is referred as a stability constraint to guarantee

stability. This constraint is constructed based on a Lyapunov function V : R3 → R≥0 and

its associated stabilizing constrained control law un : R3 → U[i]
pf . This setup is inspired

by the result in [de la Pena and Christofides, 2008] to improve the performance of path

following. Finally, l[i] : R3 ×R×R×R2 → R≥0 is the stage cost of the final horizon cost

J [i].

In state feedback sampled-data MPC, the optimal control problem OCP(·) is repeatedly

solved at every discrete sampling instant ti = iδ, i ∈ N+, where δ is a sampling interval.

Let ū[i]∗(τ) be the optimal solution of the optimal control problem OCP(·). The MPC
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control law u
[i]
mpc(·) is then defined as

u[i]
mpc(t) = ū[i]∗(t) for t ∈ [ti, ti + δ]. (3.43)

Before presenting the main result for the path following problem with the proposed MPC

scheme, we make the following assumptions.

Assumption 2.

A2.1 The stage cost l[i](·) is continuous, positive definite, and l[i](·) = 0 when x̄[i] = 0 and

u
[i]
a , [−v[i]

γ + (vd(γ[i]) + v
[i]
c ) cos e

[i]
ψ , r

[i] − κ[i](γ[i])g[i](γ[i])v
[i]
γ ]T = 0.

A2.2 Given the path following error dynamics in (3.40), there exist a Lyapunov function

V : R3 → R≥0 such that V is positive definite and V (x[i]) = 0 only for x[i] =

0, and an associated nonlinear feedback control law un : R3 → U[i]
pf that satisfies

∂V
∂x[i] f(x[i],un(x[i])) ≤ 0 for all x[i]. Further, un(x[i]) globally stabilizes (3.40).

We now state an important result for the constrained path following problem using

the proposed MPC scheme.

Theorem 3.4 (Path following with MPC). Consider the path following error system

(3.40) subject to the input constrained set Upf given by (3.41), controlled by the proposed

MPC scheme, and let Assumption 2 hold true. Then, the origin of the path following

error is globally asymptotically stable.

Proof: See section 3.7.8.

The most important requirement in the proposed MPC scheme is the existence of a

stabilizing control law un(·) and an associated Lyapunov function V (·) that satisfies As-

sumption A2.2. It can be shown that the control law in the following lemma satisfies the

assumption.

Lemma 3.3 (Global Constrained Nonlinear PF Controller). Consider the path following

error system (3.40) and let vmax in (3.41) be chosen such that

vdmax + kc < vmax < rmax/max(|κ(γ)g(γ)|). (3.44)
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Then, the global Lyapunov based control law given by

un(x) =

vγ
r

 =

 1
g(γ)

(u cos(eψ) + k1 tanh(ex))

− k3eyu sin(eψ)

(1+e2x+e2y)eψ
− k2 tanh(eψ) + κ(γ)g(γ)vγ

 , (3.45)

where k1, k2, k3 ∈ R>0 are tuning parameters that satisfy

0 < k1 ≤ vmax min(g(γ))− (vdmax + kc)gmax,

0.5k3umax + k2 ≤ rmax −max(|κ(γ)g(γ)|)vmax

(3.46)

renders the origin of the path following error system GAS. Further, the Lyapunov function

associated with the control law (3.45), given by

V (x) =
k3

2
ln(1 + e2

x + e2
y) +

1

2
e2
ψ, (3.47)

satisfies Assumption A2.2.

Proof: See section 3.7.9.

Remark 3.10. Notice that for the sake of simplicity we dropped the subscript [i] in

equations (3.44) - (3.47).

Remark 3.11. The MPC scheme proposed above is but one possible solution to the

problem of stabilizing the path following error system. One can use for example the MPC

proposed in [Yu et al., 2015], where terminal constraints are imposed to guarantee recursive

feasibility and stability. However, due to the need of a terminal set, the region of attraction

in [Yu et al., 2015] is local, while the region of attraction for the path following error in

Theorem 3.4 is global. The choice of Lyapunov function in (3.47) is inspired by the work

of [Jiang et al., 2001] on mobile robot trajectory tracking.

It is obvious that with the constraint (3.42h) the MPC scheme improves the perfor-

mance of the closed-loop path following error system compared to the nonlinear control

law. A comparative study can be found in [Hung and Pascoal, 2018,Hung et al., 2018].
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3.4 Overall closed-loop CPF system

In the previous section, with a view to adopting a decoupling strategy for the design of

a cooperative path following system, we proposed a distributed CPF strategy to solve

two key problems involved: i) multiple agent coordination with an ETC mechanism and

ii) MPC for input-constrained path following of each agent. The resulting distributed

CPF strategy can be implemented using Algorithm 3.1 described below. The algorithm

Algorithm 3.1 MPC-CPF with the ETC mechanism for vehicle i

1: At every sampled time t, vehicle i implements following procedures:
2: procedure coordination and communication
3: if h[i](t) ≥ 0 then
4: Broadcast γ[i](t);
5: Reset γ̂[i] using (3.31b);

6: if Receive a new message from vehicle j then
7: if j ∈ N [i] then
8: Reset γ̂[ij] using (3.36b);

9: Run the estimator (3.31);
10: Run the estimator (3.36);

11: Update the correction speed v
[i]
c (t) using (3.26);

12: return v
[i]
c (t)

13: procedure path following
14: Update the path following error x[i](t);
15: Solve the OCP(·) problem to find ū[i](·);
16: Use the MPC control law (3.43) to update v

[i]
γ (t), r[i](t);

17: Update the vehicle’s speed u[i](t) using (3.39);

18: return u[i](t), r[i](t), v
[i]
γ (t)

embodies in its structure the decoupling methodology adopted, that is, the CPF control

system can be seen as a two-layer control structure. In this context, coordination and

communications together play the role of an upper layer whose objective is to coordinate

the path parameters to reach a desired formation, while the main objective of the path

following layer is to steer the vehicles to their assigned paths. In Theorem 3.3 and Theorem

3.4, we have shown the important facts that if the two layers are considered separately,

the path following system of each vehicle is GAS while the coordination error that involves

the path parameters is ISS respect to the input σ that includes the trigger threshold η and

the communication delays. In this section, we shall state results for the overall closed-loop

CPF system where the interaction of the two layers is taken explicitly into account.

78



3.5 Simulation examples

Theorem 3.5. Consider the complete closed-loop CPF system composed by

• A set of N vehicles, whose motions are described by (3.2) subject to the input con-

straints given by (3.3).

• A set of paths given by (3.1) and the desired speed profiles vd(γ[i]) satisfying Condi-

tion 1, with all i ∈ N .

Let the vehicles be controlled by the proposed MPC-CPF and the ETC mechanism given

by Algorithm 1. Then, the overall closed-loop system is ISS respect to the state xcl ,

[xT
pf , ξ

T]T and the input σ, where xpf is the state of the path following layer defined as

xpf , col(x[i]) and recall that σ, given by (3.38), is the disturbance made by the triggering

functions and communication delays.

Proof: See section 3.7.10.

3.5 Simulation examples

We consider a fleet of five Medusa class of AMVs with the input constraints u[i] ∈
[0.2, 2]m s−1 and r[i] ∈ [-0.2, 0.2]rad s−1 for all i = N , {1, ..., 5} (see [Abreu et al., 2016b]

for the details of the vehicles’ specifications). The vehicles are required to execute the

two types of CPF missions described in Table 3.2, with the paths parameterized by their

normalized arc-lengths. For triangular formations, the vehicles are required to maneuver

along parallel paths while adopting the shape of a triangle, see Fig.3.6, left. For circular

formations, the vehicles are required to maneuver along nested circumferences and align

themselves radially, see Fig.3.6, right. In Table 3.2, for triangular formations, d[i] and c[i]

are parameters specifying the desired cross-track and along-track distances between the

vehicles, while for circular formations, a[i] are the radii of the circumferences. The commu-

nication topology adopted is depicted in Fig.3.5, which shows the indexes of the vehicles

and the bidirectional communication links between them (represented by arrows). In the

proposed MPC scheme, the Lyapunov-based controller in Lemma 3.3 is used to construct

the constraint (3.42h). The tunning parameters for the Lyapunov-based controller, the

coordination controller, and the event triggering threshold functions are set in Table 3.3.

Notice that the coordination gain k
[i]
c is chosen to satisfy conditions (3.24), while the gains
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1 3

45

1 2

Figure 3.5: Communication topology

Table 3.2: Planed missions

Formation Planned paths vd

Triangular

p
[i]
d (γ[i]) = [a(γ[i] − c[i]), d[i]]T,

a = 50m, c[1] = c[5] = 0, c[2] = c[4] = 0.1, c[3] = 0.2, 0.02

d[1] = -10m, d[2] = -5m, d[3] = 0m, d[4] = 5, d[5] = 10m

Circular

p
[i]
d (γ[i]) = [a[i] cos(γ[i]), a[i] sin(γ[i])]T,

a[1] = 30m, a[2] = 33m, a[3] = 36m, 0.02

a[4] = 39m, a[5] = 42m

Table 3.3: Controller parameters

Controller Tunning parameters

Path Following

k
[1]
1 = 0.3, k

[2]
1 = 0.33, k

[3]
1 = 0.36,

k
[4]
1 = 0.39, k

[5]
1 = 0.42,

k
[i]
2 = 0.06, k

[i]
3 = 0.09, v

[i]
max = 0.05,∀i = 1, ..., 5

Coordination

k
[i]
c = 0.008, i = 1, ..., 5

η[i](t) = c1e
−αt + ε,∀i = 1, ..., 5

c1 = 0.1, α = 0.2, ε = 5e-3

for the Lyapunov-based controller are chosen to satisfy conditions in Lemma 3.3 for all

vehicles. The stage cost for the MPC scheme is defined as the quadratic form

l[i] (·) = x̄[i](τ)
T
Qx̄[i](τ) + u[i]

a (τ)
T
Ru[i]

a (τ),

where Q=diag(1, 1, 2) and R=diag(2, 20). The sampling interval is set to δ = 0.2s and the

prediction horizon is set to Tp = 2s. To solve the finite optimal control problem OCP(·),
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we used Casadi, an open source optimization tool described in [Andersson et al., 2018].

Communication delays are set ∆ = 2s for all transmitted messages and for both missions.

Figure 3.6: Trajectories of the vehicles. Left (triangular formation), right (circular formation).
Solid lines are the desired paths, dash-dot lines are the trajectories of the vehicles.
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Figure 3.7: Vehicles inputs. Black dash lines are bounds of the inputs.

The trajectories of the vehicles are shown in Fig.3.6. It is visible that the vehicles

converge to the desired paths and reach the desired formations in both missions. The

performance of the proposed CPF strategy for the two missions is illustrated in Fig.3.7–

Fig.3.9. It can be seen from Fig.3.7 that the inputs of the vehicles produced by the

proposed CPF strategy satisfy the constraints assigned to them. Notice also in Fig.3.8
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Figure 3.8: Path following performance: evolution of the Lyapunov function V for path fol-
lowing.

how the Lyapunov functions for path following of the vehicles are monotonically decreas-

ing to zero, corroborating the results that the path following errors are asymptotically

stable.

Regarding coordination among the vehicles, Fig.3.9(a) shows that the coordination states

(path parameters) reach consensus asymptotically and evolve with the desired common

speed profile vd. In terms of communications between the vehicles, Fig.3.9(b) indicates

that at beginning of the simulation, communications take place more frequently. In con-

trast, when the vehicles reach the desired formations, they no longer need to communicate.

This can be explained with the help of Fig.3.9(c) which shows the estimation errors and

the triggering threshold functions. At the beginning of the missions, the dynamics of

the path parameters are disturbed by the path following system (because the vehicles

are away from their paths) and the correction speeds are updated from the coordination

system. As a consequence, there are significant errors in the path parameters’ estimates.

Hence, the estimation errors hit the threshold functions frequently which, in turn, triggers

communications more frequently.

3.6 Conclusions

We proposed a solution to the constrained CPF problem that exploits the tools of Model

Predictive Control, network theory, and event triggered communications. The main con-

tribution of this work lies in the fact the proposed strategy is not only capable of explicitly

handling practical constraints on vehicles’ inputs and on the topology of the communica-

tions network, but also saves communication bandwidth. We have shown that the path

following error of all vehicles error is GAS, which is a strong result for an input-constrained
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(c) Estimation errors γ̃[i]. Solid orange is threshold triggering functions η[i]

Figure 3.9: Performance of coordination and communications. Left (triangular formation),
right (circular formation)
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system. Practically, this implies that regardless of the initial positions and orientations,

the vehicles always converge to and follow their assigned paths. At the coordination level,

we proposed a novel distributed control law with an ETC mechanism for the synchroniza-

tion of multi agent nonlinear system that takes into account the agent input constraints.

Future work will aim at implementing the proposed control method in the Medusa vehicles

that are property of IST, and assess their performance at sea, [Abreu et al., 2016b].
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3.7 Proofs

The following lemmas will be used in the proof of important theorems and corollaries.

3.7.1 Lemma on connectivity of graph

Lemma 3.4. Let L be the Laplacian matrix of a graph G. Suppose G is undirected and

connected. Then, for any vector x ∈ RN and x ⊥ 1, the following inequalities hold:

λ2‖x‖2 ≤ xTLx ≤ λN‖x‖2, (3.48a)

λ2‖x‖ ≤ ||Lx|| ≤ λN‖x‖, (3.48b)

where λ2 and λN ∈ R>0 are the second smallest and the largest eigenvalues of L, respec-

tively.

Proof. Let v1,v2, ...,vN ∈ RN be the eigenvectors of L associated with the eigenvalues

λ1, λ2, ..., λN . Let λ1 ≤ λ2 ≤ ... ≤ λN . Since the graph is undirected and connected, it

is well-know that λ1 = 0 and v1 = 1, and λi > 0 for all 2 ≤ i ≤ N . From the Courant-

Fischer theorem in [Horn and Johnson, 2012], it follows that

λ2 = min
x 6=0 and x⊥1

xTLx

xTx
, λN = max

x 6=0

xTLx

xTx
.

Therefore, the inequality (3.48a) holds. We now consider the matrix B = L2. It can

be easily checked that B has an eigenvalue at 0 and with an associated eigenvector 1.

Let λi(B) be the eigenvalues of B. Clearly, λi(B) = λ2
i , i = 1, ..., N . Applying again

the Courant- Fischer theorem, it follows that for any x ∈ RN and x ⊥ 1, λ2(B)‖x‖2 =

λ2
2‖x‖

2 ≤ xTBx = ‖Lx‖2 ≤ λN(B)‖x‖2 = λ2
N‖x‖

2. Therefore, the inequality (3.48b)

holds. �

3.7.2 Lemma on tan hyperbolic function

Lemma 3.5. Let y ∈ Rn and θ ∈ (0, 1). Then, for all x ∈ Rn such that ‖x‖∞ ≥

(2n− 1)‖y‖∞/θ the following inequality holds

−xTtanh(x + y) ≤ −‖x‖∞
2

tanh ((1− θ)‖x‖∞) .
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Proof. In the proof, we will use the following important facts:

Let a, b ∈ R, α > 0. If |αa| ≥ |b| then

Fact 1: a tanh(αa+ b) ≥ 0 and

Fact 2: a tanh(αa+ b) ≥ |a| tanh(|αa| − |b|).
Fact 1 can be checked by noting that if |a| ≥ |b|, then a and tanh(a + b) have the same

sign. Fact 2 holds because tanh is a monotonically increasing function of its argument.

The proof of the Lemma proceeds as follows:

Let x̄ , ‖x‖∞, ȳ , ‖y‖∞, and m , (2n− 1)ȳ/θ and

S , −xTtanh(x + y) = −
∑n

i=1 xi tanh(xi + yi) (3.49)

Recall from Fact 1 that xi tanh(xi + yi) ≥ 0 if |xi| ≥ |yi| and define the two sets

S1 , {xi : |xi| ≥ ȳ} and S2 , {xi : |xi| < ȳ}.

With the above definition, equation (3.49) can be rewritten as

S = −
∑
xi∈S1

xi tanh(xi + yi)︸ ︷︷ ︸
=:C1

−
∑
xi∈S2

xi tanh(xi + yi)︸ ︷︷ ︸
=:C2

(3.50)

Using Fact 1, we conclude that all the products in the sum of C1 are negative. Later, we

will show that C2 is bounded. We will henceforth use the condition given in the Lemma

that x̄ ≥ m. Note that m > ȳ for all θ ∈ (0, 1), and therefore x̄ > ȳ. It follows that the

set S1 has at least one element, that is, |S1| ≥ 1 and therefore |S2| ≤ n − 1. Let i∗ be

the index such that xi∗ ∈ S1 and |xi∗| = x̄. Since xi tanh(xi + yi) ≥ 0 for all xi ∈ S1, it

follows that
C1 ≤ −xi∗ tanh(xi∗ + yi∗)

= −xi∗ tanh((1− θ)xi∗ + θxi∗ + yi∗)

= −xi
∗ tanh((1− θ)xi∗)

σ︸ ︷︷ ︸
=:D1

−xi
∗ tanh(θxi∗ + yi∗)

σ︸ ︷︷ ︸
=:D2

,
(3.51)

where σ , 1+tanh((1−θ)xi∗) tanh(θxi∗+yi∗). Because |θxi∗| = θx̄ ≥ θm > ȳ ≥ yi∗ , using

Fact 1 it follows that 0 ≤ tanh((1 − θ)xi∗) tanh(θxi∗ + yi∗) ≤ 1. Therefore, 1 ≤ σ ≤ 2.
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Recall that |xi∗| = x̄ = ‖x‖∞ and 1 ≤ σ ≤ 2 we can conclude that

D1 ≤ −
‖x‖∞

2
tanh ((1− θ)‖x‖∞) . (3.52)

Furthermore, since |θxi∗| ≥ yi∗ , using Fact 2, it follows that

D2 ≤ −
|xi∗| tanh(|θxi∗ | − |yi∗|)

2
≤ −(2n− 1)

2θ
ȳ tanh((2n− 1)ȳ − ȳ) ≤ −(n− 1)ȳ tanh(2(n− 1)ȳ).

(3.53)

At this point, we observe that

• For n = 1, D2 ≤ 0. Notice also that C2 = 0 because |S2| = 0.

• For n ≥ 2, D2 ≤ −(n − 1)ȳ tanh(2ȳ). Also, since |xi| ≤ ȳ for all xi ∈ C2 and

|S2| ≤ (n− 1), it follows that C2 ≤ (n− 1)ȳ tanh(2ȳ).

We conclude that D2 + C2 ≤ 0 for all n ≥ 1. As consequence, S = D1 + D2 + C2 ≤ D1.

Hence, from (3.52) we conclude that

S = −xTtanh(x + y) ≤ −‖x‖∞
2

tanh ((1− θ)‖x‖∞)

for all θ ∈ (0, 1) and ‖x‖∞ ≥ (2n− 1)‖y‖∞/θ. This concludes the proof. �

3.7.3 Proof of Theorem 3.1

The proof of the theorem is done in two steps.

Step 1: Feasibility. Recall that u[i] = g[i](γ[i])(vd(γ[i])+v
[i]
c ), Replacing v

[i]
c by (3.23) yields

u[i] = g[i](γ[i])
(
vd(γ[i])− k[i]

c tanh
(∑

j∈N [i] z[i] − z[j]
))
.

Since g[i](γ[i]) and k
[i]
c are positive for all γ[i] and i ∈ N , it follows that

g[i](γ[i])(vd(γ[i])− k[i]
c ) ≤ u[i] ≤ g[i](γ[i])(vd(γ[i]) + k[i]

c ).

Furthermore, because k
[i]
c ≤ cu/g

[i]
max for all i ∈ N (see (3.24)), it follows from condition

C1.2 that u[i] satisfies the inequality u
[i]
min ≤ u[i] ≤ u

[i]
max for all i ∈ N , from which it can

be concluded that the correction speed (3.23) satisfies the linear speed constraint (3.20).
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Step 2: Global Consensus. From (3.21), (3.19) and (3.23) we obtain

ż[i] = 1
vd(γ[i])

(vd(γ[i])− k[i]
c tanh

(∑
j∈N [i] z[i] − z[j]

)
= 1− d[i] tanh

(∑
j∈N [i] z[i] − z[j]

)
where d[i] , k

[i]
c /vd(γ[i]) > 0 for all γ[i] and i ∈ N . As a consequence, the dynamics of z

are described by

ż = 1−Ktanh(Lz), (3.54)

where K , diag(d[1], d[2]..., d[N ]) ∈ RN×N . We now consider the Lyapunov function can-

didate for the closed loop coordination system, defined as

Vc(ξ) =
1

2
ξTLξ. (3.55)

Intuitively, Vc measures the disagreement between the agents’ states (path parameters).

Notice that from the definition in (3.22), ξ ⊥ 1. Using Lemma 3.4 we obtain Vc(ξ) ≥
λ2‖ξ‖2/2 ≥ 0 for all ξ and Vc(ξ) = 0 iff ξ = 0. Therefore, Vc is a positive definite function.

Computing the time derivative of Vc and using (3.54), we obtain

V̇c = ξLξ̇ = zTLż

= −zTLKtanh(Lz) = −qTKtanh(q) ≤ 0
(3.56)

for all ξ, where q , Lz = Lξ. Because K � 0, V̇c = 0 iff q = 0. Furthermore, L1 = 0,

this implies V̇c = 0 when either ξ = 0 or ξ spans 1. However, from the definition in

(3.22) ξ is always orthogonal to 1, hence V̇c = 0 iff ξ = 0. This implies that Vc stops

decreasing if and only if ξ = 0. Therefore, we conclude that ξ = 0 is GAS. This implies

that z[i](t) = z[j](t) or, equivalently, γ[i](t) = γ[j](t) for all i, j ∈ N as t→∞. �

3.7.4 Proof of Lemma 3.1

The first relation comes from the fact that without delays the estimators for γ̂[i] and γ̂[ji] in

(3.31) and (3.32), respectively, are always initialized at the same value. Furthermore, since

vd(·) is identical to both estimators, γ̂[i](t) = γ̂[ji](t) for all t (see Fig.3.4 as an example).

The second relation stems from the fact with the ETC mechanism γ̃[i] is always enforced

to satisfy |γ̃[i](t)| ≤ η[i](t) and, since i) holds for all t then ii) holds for all t. �
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3.7.5 Proof of Theorem 3.2

The proof is done in three steps:

Step 1: From Lemma 3.1, and (3.30) we conclude that |e[i](t)| ≤ η[i](t)/vdmin for all t and

all i ∈ N . Letting e = [e[1], e[2], ..., e[N ]]T, it follows that

‖e‖∞ ≤ ‖η‖∞/vdmin ≤
√
N‖η‖/vdmin. (3.57)

Step 2: We show that the closed-loop coordination system is ISS respect to the state ξ

and input η. With the control law (3.28), the dynamics of z can be rewritten as

ż = 1−Ktanh(Lz + Ae), (3.58)

where A is the adjacency matrix of the graph. Notice that compared with (3.54), for the

case continuous communications, the term Ae can be viewed as an external disturbance.

It follows from the above that the derivative of Lyapunov function candidate Vc in (3.55)

is given by

V̇c = −zTLKtanh(Lz + Ae)

≤ −dminq
Ttanh(q + Ae),

where dmin , mini∈N d
[i] = kmin/vdmax and kmin , mini∈N k

[i]
c . Now, using Lemma 3.5 (in

Appendix A), for any θ ∈ (0, 1) it follows that

V̇c ≤ −dmin
‖q‖∞

2
tanh ((1− θ)‖q‖∞)

for all ‖q‖∞ ≥ (2N − 1)‖Ae‖∞/θ. Recall that q = Lξ. Using Lemma 3.4, we ob-

tain ‖q‖∞ = ‖Lξ‖∞ ≥ λ2‖ξ‖/
√
N. Furthermore, from (3.57), it follows that ‖Ae‖∞ ≤

‖A‖∞‖e‖∞ ≤ ‖A‖∞
√
N‖η‖/vdmin. As a consequence,

V̇c ≤ −dmin
λ2‖ξ‖
2
√
N

tanh

(
(1− θ)λ2‖ξ‖√

N

)
=: −W1(ξ) (3.59)

for all ‖ξ‖ ≥ N(2N−1)‖A‖∞
λ2θvdmin

‖η‖ =: ρ(‖η‖).

It can bee seen that W1 is positive definite and ρ is a class K function. Furthermore,
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Vc is bounded according to

α1(‖ξ‖) ≤ Vc ≤ α2(‖ξ‖), (3.60)

where α1(‖ξ‖) , λ2‖ξ‖2 and α2(‖ξ‖) , λN‖ξ‖2 are two K class functions. Therefore,

using the ISS-Theorem (see Theorem A.1 in Appendix A) we conclude that Vc is an ISS-

Lyapunov function for the closed-loop coordination error system. Hence, the closed loop

coordination system is ISS respect to the state ξ and the input η. This concludes the

proof. �

3.7.6 Proof of Lemma 3.2

Let Tk , [t
[i]
k , t

[ji]
k ) be the time interval between the instant t

[i]
k when agent i broadcasts

a message including (t
[i]
k , γ

[i](t
[i]
k )) and instant t

[ji]
k when agent j; j ∈ N [i] receives this

message. It is important to note that the triggering condition for agent i is independent

of the communication delays. Therefore, it is possible that agent i may end up sending

new messages to agent j before the first message has been received by the latter agent.

At the same time, from the point of view of agent j, this agent might also receive different

messages from agent i in the interval Tk. These scenarios are illustrated in Fig.3.10.

We now consider the estimation error γ[i] − γ̂[ji] in the interval Tk. Notice that in this

interval γ̂[ji] may be discontinuous, because whenever agent j receives a new message

from agent i, γ̂[ji] will be reset according to (3.36b). Let t
[ji]
h , t

[ji]
h+1, ..., t

[ji]
h+H ∈ Tk be a

sequence of time instants at which agent j; j ∈ N [i] receives messages broadcast by agent

i at the corresponding times t
[i]
h , t

[i]
h+1, ..., t

[i]
h+H . Without loss of generality, we assume that

t
[i]
k ≤ t

[ji]
h ≤ t

[ji]
h+1 ≤ ... ≤ t

[ji]
h+H ≤ t

[ji]
k .

We now consider the estimation error γ[i] − γ̂[ji] in each interval Th , [t
[ji]
h , t

[ji]
h+1) ⊆ Tk.

To this end, we define a new variable γ̂
[ji]
h as follows

γ̂
[ji]
h (t) = γ[i](t

[i]
h ) +

∫ t
t
[i]
h
vd(γ̂

[ji]
h (τ))dτ (3.61)

From (3.36) and (3.61), it can be observed that γ̂[ji](t) = γ̂
[ji]
h (t) for all t ∈ Th. This is

also illustrated in Fig.3.10. Therefore, in the interval Th, instead of examining the error

between γ̂[ji] and γ[i], we examine the error between γ̂
[ji]
h and γ[i]. When t ∈ Th, from

(3.61) we obtain

γ̂
[ji]
h (t) = γ̂

[ji]
h (t

[ji]
h ) +

∫ t
t
[ji]
h
vd(γ̂

[ji]
h (τ))dτ

= γ̂
[ji]
h (t

[i]
h+1) +

∫ t
t
[i]
h+1

vd(γ̂
[ji]
h (τ))dτ.

(3.62)
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Figure 3.10: Illustration of the evolution of variables with communication delays. Solid black
denotes the true trajectory of γ[i]. Solid blue denotes the estimate of γ[i] at agent
i. Solid red denotes the estimate of γ[i] at agent j, namely γ̂[ji], while dot-brown

denotes the auxiliary variable γ̂
[ji]
h .

From (3.19), it follows that

γ[i](t) = γ[i](t
[ji]
h ) +

∫ t
t
[ji]
h

(
vd(γ[i](τ)) + v

[i]
c (τ)

)
dτ

= γ[i](t
[i]
h+1) +

∫ t
t
[i]
h+1

(
vd(γ[i](τ)) + v

[i]
c (τ)

)
dτ.

(3.63)

Subtracting both sides of (3.62) from equation (3.63) and taking absolute values, yields

|γ[i](t)−γ̂[ji]
h (t)| ≤ |γ[i](t

[i]
h+1)−γ̂[ji]

h (t
[i]
h+1)|+

∫ t
t
[i]
h+1
|vd(γ[i](τ))− vd(γ̂

[ji]
h (τ))|dτ +

∫ t
t
[i]
h+1
|v[i]

c (τ)|dτ︸ ︷︷ ︸
=:A

.

(3.64)

Notice that at the time t
[i]
h+1 at which γ[i] is reset, |γ[i](t

[i]
h+1)− γ̂[ji]

h (t
[i]
h+1)| ≤ η[i](t

[i]
h+1) (see

also Fig.3.10). Since t
[i]
h+1 ≤ t for all t ∈ Th, η[i](t

[i]
h+1) ≤ η̄[i](t). Therefore, |γ[i](t

[i]
h+1) −

γ̂
[ji]
h (t

[i]
h+1)| ≤ η̄[i](t). In addition, from (3.64) we obtain

A ≤ (vdmax − vdmin + kmax)(t− t[i]h+1) = (vdmax − vdmin + kmax)∆
[ji]
h+1(t).
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Since t
[i]
h+1 ≤ t for all t ∈ Th, ∆

[ji]
h+1(t) ≤ ∆̄[i](t). We conclude that for all t ∈ Th

|γ[i](t)− γ̂[ji](t)| ≤ η̄[i](t) + (vdmax − vdmin + kmax)∆̄[i](t). (3.65)

Using a similar reasoning, it can be shown that in any time interval t ∈ [t
[ji]
h+n, t

[ji]
h+n+1) ⊆ Tk;

n = 1, ..., H, inequality (3.65) also holds. Hence, we conclude that the inequality (3.65)

holds for all t ≥ 0. This completes the proof. �

3.7.7 Proof of Theorem 3.3

The proof is similar to that of Theorem 3.2. Using Lemma 3.2 and (3.30), it follows that

|e[i](t)| ≤
(
η̄[i](t) + (vdmax − vdmin + kmax)∆̄[i](t)

)
/vdmin.

Hence, from (3.38),

‖e‖∞ ≤ ‖σ‖∞/vdmin ≤
√
N‖σ‖/vdmin. (3.66)

Proceeding similarly to Step 2 in the proof of Theorem 3.2, we can show that the inequality

(3.59) holds for all ‖ξ‖ ≥ ρ(‖σ‖). Therefore, the closed loop coordination system is ISS

respect to the state ξ and the input σ. This concludes the proof. �

3.7.8 Proof of Theorem 3.4

Recursive Feasibility. Clearly, un(x[i](t)) is one of the feasible solutions of ū[i](τ), τ ∈
[t, t + δ] satisfying the constraints (3.42g) and (3.42h), while the remaining ū[i](τ), τ ∈
[t+ δ, t+ Tp] can be chosen freely in the input space U[i]

pf .

Stability. The proof of globally asymptotic stability relies on the contractive constraint

(3.42h) which, together with Assumption A2.2, implies that

V̇ (t) = ∂V
∂x[i] f(x[i](t),u

[i]
mpc(t)) ≤ ∂V

∂x[i] f(x[i](t),un(x[i](t))) ≤ 0.

We consider two possible cases for u
[i]
mpc(t). In the first case, the MPC scheme finds

u
[i]
mpc(t) 6= un(x[i](t)), yielding V̇ (t) = ∂V

∂x[i] f(x[i](t),u
[i]
mpc(t)) < ∂V

∂x[i] f(x[i](t),un(x[i](t))) ≤
0, that is, V strictly decreasing. In the second case, u

[i]
mpc(t) = un(x̄[i](t)). Since un(x[i])

globally stabilizes (3.40), we can conclude that x[i] → 0 as t→∞. Thus, u
[i]
mpc(t) globally

stabilizes (3.40). �

92



3.7 Proofs

3.7.9 Proof of Lemma 3.3

The proof is done in two steps:

Feasibility. To show that the heading rate r is feasible, we compute

|r| =
∣∣∣− k3eyu sin eψ

(1+e2x+e2y)eψ
− k2 tanh(eψ) + κ(γ)g(γ)vγ

∣∣∣
≤ 0.5k3umax + k2 + max(|κ(γ)g(γ)|)vmax.

Clearly, by choosing k2, k3 positive such that (3.46) is satisfied, it follows that |r| ≤ rmax.

Next, it is easy to check v is feasible by computing

|vγ| =
∣∣∣ 1
g(γ)

(u cos(eψ) + k1 tanh(ex))
∣∣∣ ≤ (|u|+ k1)/g(γ),

Notice that according to (3.39), |u| ≤ (vdmax + kc) max(g(γ)). Hence, Choosing k1 such

that (3.46) is satisfied and using condition (3.44), it follows that |vγ| ≤ vmax.

Global asymptotic stability. Replacing u in (3.40) with the control law (3.45) yields the

closed-loop path following error system described by

ẋ = f(x, u) =

 u cos(eψ)ey + k1 tanh(ex)(1− ey)
u (sin(eψ)− ex cos(eψ))− k1 tanh(ex)ex

− k3ey sin(eψ)

(1+e2x+e2y)eψ
u− k2 tanh(eψ)

 , (3.67)

where u is given by (3.39). Notice that system (3.67) is non-autonomous since u(t) is

in general a function of time (as vc depends on the the triggering functions that are

time-dependent). To show that x = 0 is GAS we need to show that

i) x = 0 is stable and

ii) x = 0 is globally attractive, i.e. lim
t→∞

x(t) = 0 for any initial condition x(t0).

i). Stability.

Computing the time derivative of the Lyapunov function given in (3.47) along the trajec-

tory of (3.67) yields

V̇ (x) = −k3k1ex tanh(ex)

1 + e2
x + e2

y

− k2eψ tanh(eψ) ≤ 0 (3.68)

for all x. Using the fact that V̇ is a negative semi-definite function and V is radially

unbounded, it follows that x = 0 is stable and x(t) is bounded given any initial condition
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x(t0) at an arbitrary initial time t0.

ii). x = 0 is globally attractive.

From (3.68), it can be seen that V̇ is negative everywhere except on the line Ω , {x|ex =

0, eψ = 0} where V̇ (x) = 0. For the system to maintain the V̇ (x) = 0 condition, the

trajectory of the system must be confined to the line Ω. Unless ey = 0, this is impossible

because from the third equation of (3.67)

ėψ ≡ 0⇒ − k3ey(t)

1 + e2
x(t) + e2

y(t)
u(t) ≡ 0. (3.69)

Because u(t) 6= 0 for all t, (3.69) holds iff ey(t) ≡ 0. This implies that the system can

maintain the V̇ (x) = 0 condition only at the origin x = 0. Therefore, V (x(t)) must

decrease toward to zero. As a consequence, x→ 0 as t→∞. This completes the proof.

Regarding this proof, two interesting observations can be made. Firstly, no matter what

u(t) is, as long as it does not go through zero the path following error always converges

to zero. This means that the update of correction speeds from the coordination layer

does not affect to asymptotic stability of the path following error system, i.e. the path

following error always converges to zero asymptotically regardless of the correction speeds.

Hence, from a stability point of view, the path following control layer is decoupled from

the coordination layer. Secondly, the fact that convergence of x(t) to zero is obtained

if u(t) > 0 for all t is intuitive, in the sense that forward motion is required to ensure

that, by rotating, the vehicle will be able to track the ”virtual reference” (the origin of

the parallel transport attached to the path).

Remark 3.12. Recall that the reference speed u assigned for the vehicle, in general, is

a function of time due to the ETC mechanism; and therefore the resulting path following

error system is non-autonomous. This is the reason why we did not use LaSalle’s invari-

ance principle to conclude the stability in the proof. Note that this is different from the

single path following studied in [Hung et al., 2018] where the speed of the vehicle depends

only on the path parameter, which makes the path following error system autonomous;

and therefore the proof of stability can be done using the invariance principle.
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3.7.10 Proof of Theorem 3.5

The proof follows from the results stated in Theorem 3.3 and Theorem 3.4. As stated

in Theorem 3.4, the convergence of the path following error of each vehicle to zero is

independent of the correction speed computed by the coordination layer. Without loss of

generality, the dynamics of xpf can be written as

ẋpf = fpf(xpf , t). (3.70)

From Theorem 3.4, xpf = 0 is GAS. We now consider the coordination error vector ξ for

the overall closed-loop CPF system. In Section 3.2.2, as an intermediate step in the design

of a CPF control law, we assumed the vehicles were already on their assigned paths. That

is, x[i] was assumed to be zero for all i ∈ N . Therefore, we did not take into account

the effect of the path following layer on the coordination layer. However, in the overall

closed-loop CPF system the dynamics of the path parameters in (3.19) can be rewritten

as

γ̇[i] = vd(γ[i]) + v[i]
c + d

[i]
pf , i ∈ N , (3.71)

where d
[i]
pf : (γ[i],x[i]) → d

[i]
pf(γ

[i],x[i]); i ∈ N can be viewed as an external disturbance

introduced by the path following system. Notice that d
[i]
pf is bounded for all i ∈ N because

vd(·), v[i]
c are bounded and γ̇[i] = v[i], where v[i] is always bounded in the set U[i]

pf for all

i ∈ N . In addition, it follows from Theorem 3.4 that x[i] → 0 as t → ∞ for all i ∈ N .

This, together with the first equation of (3.40) imply that as t → ∞, γ̇[i] → vd + v
[i]
c for

all i ∈ N . From (3.71), this means that d
[i]
pf → 0 as t → ∞. With the disturbance from

the path following layer, the dynamics of z in (3.58) are rewritten as

ż = 1−Ktanh(Lz + σ) + dpf , (3.72)

where dpf = [d
[1]
bf /vd(γ[1]), ..., d

[N ]
bf /vd(γ[N ])]T ∈ RN . As a consequence,

ξ̇ = W ż = −WKtanh(Lξ + σ) +Wdpf =: fc(ξ,xpf). (3.73)

Since d
[i]
pf → 0 as t → ∞, dpf → 0 as t → ∞. Further, dpf is always bounded, hence the

solution for ξ in (3.73) is always bounded. As a consequence, from [Loŕıa and Panteley,

2005] we conclude that the cascaded system composed by (3.70) and (3.73) is ISS respect

to state ξcl , [xT
pf , ξ

T] and the input σ. This completes the proof. �
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4.1 Literature review

This chapter addresses observability of two problems: i) target localization with a

single or multiple mobile trackers (e.g. robots) using range measurements from the track-

ers to the target, and ii) navigation of an autonomous vehicle under unknown constant

disturbance using range measurements from the vehicle to a single beacon. For the first

problem, we consider three scenarios: i) the target is fixed, ii) the target’s velocity vector

is unknown but constant, and iii) the target’s acceleration vector is unknown but constant.

The main contributions of the chapter are threefold: i) we derive a set of necessary and

sufficient conditions on the motion of the trackers under which the target’s state, that

might include the target’s position, velocity and acceleration vectors is globally observ-

able, and ii) we show how the conditions derived lend themselves to an intuitive geometric

interpretation that yields valuable guidelines to plan the tracker’s motion iii) We com-

pare and suggest suitable fillers for the target localization and single beacon navigation

problems.

4.1 Literature review

The problems of range-based navigation and target localization have been studied exten-

sively in recent years. In what follows, by range-based navigation we mean the problem

of having a vehicle estimate its own state (position, possibly velocity and acceleration)

using measurements of the distances of the vehicle to a single or multiple beacons whose

positions are known [Bayat et al., 2016]. Target localization, on the other hand, is defined

for one or multiple trackers as the problem of tracking the state of a fixed or moving target

using range measurements from the tracker(s) to the target, [Crasta et al., 2018]. The

two problems are dual and impose the same fundamental issues on observability analysis.

Namely, for the case of target tracking, to find under what conditions on the relative mo-

tion of the tracker(s) with respect to the target is the state of the latter observable. This

problem is challenging due to the fact that range measurements are nonlinear function

of the target’s position, thus making the observability of the resulting system hard to

analyze.

One of the earliest results on the observability of target localization can be found in [Song,

1999], where the authors conclude that: “the tracker maneuver should include a nonzero

jerk motion to track a target with a constant acceleration vector while a nonzero accel-

eration motion is required to track a target with a constant velocity vector”. Although

this conclusion sounds logical it can be shown that even if these conditions are satisfied,

the target might not be localizable (trackable). To illustrate this, we consider a target
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starting at an initial position q(t0) and moving along a straight line with velocity vector v,

as shown in Fig.4.1. We also consider a tracker that can be started anywhere and moves

with a velocity vector α(t)v, with α̈(t) 6= 0 for all t, so that it satisfies the conditions

stated above. Note that with this velocity vector, the tracker will move along a straight

line parallel to the trajectory of the target. With this motion of the tracker, as shown in

the figure, there exists a virtual target moving with the same velocity vector v reflected

about the tracker’s trajectory, such that the ranges from the tracker to the true target

and its mirror image are the same. This, obviously, makes it impossible to distinguish

the target and its mirror image and brings attention to the need to study the problem of

target observability in a rigorous setting.

Because of the nonlinearity of the map from linear positions to ranges, the range-based

Target’s trajectory

Virtual target’s trajectory

Tracker’s trajectory
Same range

Figure 4.1: A counterexample: the target is not localizable if the tracker moves parallel to the
target.

observability problem must be addressed in a nonlinear system setting. This can be

done by resorting to tools from differential algebraic geometry described in [Hermann and

Krener, 1977], where a sufficient condition for local observability of a nonlinear system is

given in terms of an observability rank condition. In this context, the local observability

for an AUV modeled by an integrator is studied in [Arrichiello et al., 2013]. This work

was extended in [Palma et al., 2017] for an AUV modeled as a double integrator system.

Another approach to study local observability of a given nonlinear system involves the

use of the Fisher information matrix (FIM) to measure the amount of information that

the range measurements carry about the target’s motion. In contrast to the methods

mentioned above this approach yields quantitative results. With this approach, the ob-

servability problem is converted into that of finding conditions on the tracker’s trajectory

so as to guarantee that the FIM is non-singular, thus ensuring that the target state is at

least locally observable. See for example [Song, 1999, Masmitja et al., 2018, Ristic et al.,

2002,Crasta et al., 2018] and the references therein for related work in the area.

Other interesting results were reported in [Batista et al., 2011], where the authors consid-
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ered the problem of localizing a source (fixed-target) using range measurements obtained

with a single tracker. The underlying idea behind the work was to transform the original

nonlinear system into a higher dimensional linear time varying (LTV) system via an ap-

propriate state augmentation. Conditions on the tracker’s motion to localize the target

were then derived for the LTV system, which were proved to be sufficient for observabil-

ity of the original nonlinear system. Work along the same lines is reported in [Indiveri

et al., 2016] where a different state argumentation is proposed to avoid the singularity

that might happen in [Palma et al., 2017, Batista et al., 2011] when the range from the

tracker to the target is close to zero.

Motivated by the above considerations, this chapter mainly addresses the observability

problem of range-based target localization with one or two trackers. We then extend the

proposed method to the problem of range-based navigation with single beacon. With the

former, we analyze three scenarios where: i) the target is fixed, ii) the target’s velocity

vector is unknown but constant, and iii) the target’s acceleration vector is unknown but

constant. The key contributions of this chapter are the following.

(i) We propose two approaches to the range-based target localization and navigation

problems. The first method uses simple mathematical tools to characterize the linear

independence of a set of functions of time whereas, the second method borrows

the idea from the work in [Batista et al., 2011, Indiveri et al., 2016], which derives

observability condition of a nonlinear system from an augmented linear-time varying

system. We show that for the single beacon navigation problem our method yields

conditions equivalent to that in [Batista et al., 2011]. However, the formulation

adopted is much simpler.

(ii) For the target localization problem we also derive results for the case where the

target is localized with two trackers. We show that with two range measurements

the trackers’ motion required for observability of the target is less demanding than

in the case of a single tracker.

(iii) Finally, we show how the observability conditions derived lend themselves to intu-

itive geometric interpretations that yield valuable guidelines to plan the trackers’

motions.
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4.2 Tools for observability analysis

In this section, we recall some useful definitions and results that will be used for ob-

servability analysis in the subsequent sections. Consider the general dynamical system

described by
ẋ(t) = f(x(t),u(t)),

y(t) = h(x(t),u(t)),
(4.1)

where x ∈ Rn,u ∈ Rp,y ∈ Rm are the state, input, and output of the system, respectively,

and f(·) ∈ Rn,h(·) ∈ Rm are (nonlinear) functions.

We use the following definition of observability for the system (4.1) that is an extension

of Definition 5-5 in [Chen, 1984] as follows.

Definition 4.1 (Observability). The dynamical system described by (4.1) is said to be

(completely state) observable at t0 if there exists a finite time tf > t0 such that for any

initial state x(t0), the knowledge of the input u(t0, tf ) and the output y(t0, tf ) suffices to

determine the initial state x(t0). Otherwise, the system is said to be unobservable at t0.

In this chapter, in order to solve the observability problem we resort to a simple tool

from linear independence of functions over a compact interval of time and is, stated as

follows.

Definition 4.2 (Linearly dependent/independent functions - Section 5.2 [Chen, 1984]).

Let fi(t), for i = 1, 2, ..., n be p × 1 vector real-valued continuous functions of t. Then,

f1, ..., fn are said to be linearly dependent (LI) on time interval [t0, tf ] if and only if there

exist numbers α1, ..., αn not all zero such that

α1f1(t) + α2f2(t) + · · ·+ αnfn(t) = 0.

for all t ∈ [t0, tf ]. Otherwise, they are said to be linearly independent.

Lemma 4.1. Let fi(t), for i = 1, 2, ..., n be p× 1 vector real-valued continuous functions

of t defined on the interval [t0, tf ]. Let F be the p × n matrix with fi as its ith columns.

Define

W (t0, tf ) ,
∫ tf

t0

FT(t)F (t)dt.
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Then, W (t0, tf ) is non-singular if and only if the columns of F (t) (i.e. f1, f2, ..., fn) are

linearly independent on [t0, tf ].

This lemma is equivalent to Theorem 5-1 in [Chen, 1984].

4.3 Problem formulation

For the sake of simplicity and clarity of the notation, in this section we start by formulating

the problem of range-based target localization with single tracker. We also formulate the

range-based navigation problem which is closely related to the target localization problem.

The target localization problem with two trackers will be formulated in Section 4.5.

4.3.1 Range-based target localization

Consider a tracker that is in charge of localizing an unknown fixed or moving target. Let

{I} = {xI , yI , zI} denotes an inertial frame. In what follows we described target models

adopted.

Targets’ model: We consider three practical scenarios for the motion of the target.

Scenario A: Target is fixed.

Let q = [qx, qy, qz]
T ∈ R3 be the position vector of the target in the inertial frame {I}.

The target’s model is given by

q̇ = 0. (4.2)

The target state is defined as x , q ∈ R3.

Scenario B: Target moves with unknown constant velocity vector.

In this case, we assume that the target’s velocity vector changes slowly but is unknown.

An approximate target model in this situation is given by

q̇ = v,

v̇ = 0.
(4.3)

In this scenario, the target’s state vector is defined as x , col(q,v) ∈ R6.

Scenario C: Target moves with unknown constant acceleration vector.

We now consider the most challenging case where the target’s acceleration vector is un-
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known but changes slowly. An appropriate target model in this scenario is given by

q̇ = v

v̇ = a

ȧ = 0,

(4.4)

where a ∈ R3 denotes the target’s acceleration vector. In (4.4), the target’s state vector

is defined as x , col(q,v, a) ∈ R9.

Range measurement model: We assume that the tracker is equipped with a sensor unit

capable of measuring its range to the target according to the model

r(t) = ‖p(t)− q(t)‖, (4.5)

where p(t) denote tracker’s trajectory. The main objective of this chapter is to charac-

terize the type of tracker’s trajectory such that the target is localizable (i.e. observable).

Problem 4.1 (Target localization with single tracker). Consider the target’s model given

by (4.2)–(4.4) depending on the different scenarios considered, and the range measurement

model given by (4.5). Derive conditions for the tracker’s trajectory under which the target

is localizable, i.e. the target’s state x is uniquely determined using only the knowledge of

range measurements r(t) and the tracker’s position p(t).

4.3.2 Range-based single beacon navigation

The range-based target localization problem formulated above is similar to the range-

based single beacon navigation problem. That is, given a fixed or moving beacon with

known position, find conditions on the trajectory of a vehicle under which the vehicle’s

position (and possibly velocity) vectors can be determined using only range measurements

from the vehicle to the beacon. Formally, consider a vehicle whose motion can be described

the model

ṗ = u + vc

v̇c = 0,
(4.6)

where p ∈ R3 is the vehicle’s position, u ∈ R3 is the vehicle’s velocity vector respect

to the fluid, and vc ∈ R3 is the unknown constant disturbance (e.g. ocean current), all
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expressed in the inertial frame. Suppose that the vehicle can measure range to the beacon

using the range measurement model

r(t) = ‖p(t)− s‖, (4.7)

where s ∈ R3 is the position of beacon, assumed to be fixed and known. The range-based

navigation problem is stated as follow.

Problem 4.2 (Range-based navigation with single beacon). Consider the vehicle’s model

given in (4.6), and the range measurement model given by (4.7). Derive conditions for

the vehicle’s motion (either on u or p) under which the vehicle’s position p(t) and the

unknown disturbance vc are uniquely determined from the knowledge of the range mea-

surements r(t), the vehicle’s velocity u(t), and the position of the beacon s.

Although this problem was addressed in [Batista et al., 2011, Indiveri et al., 2016] we

will show that the technique we proposed in this chapter can resolve it in a simpler and

more efficient manner.

4.4 Target localization with a single tracker

We first describe the solution for the range-based target localization stated in Problem

4.1. We start by considering a simplest case where the target is fixed.

4.4.1 Target is fixed

It follows from (4.5) that

r2(t) = ‖p(t)− q‖2

(4.2)
= ‖p(t)‖2 − 2pT(t)q + ‖q‖2.

(4.8)

By defining

y(t) , r2(t)− ‖p(t)‖2, (4.9)

F (t) , [1 − pT(t)], (4.10)
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and w , [‖q‖2,qT]T ∈ R4, (4.8) can be rewritten as

y(t) = F (t)w. (4.11)

Multiplying both sides of the above equation with FT(t) then integrating it over [t0, tf ]

yields ∫ tf

t0

FT(t)y(t)dt︸ ︷︷ ︸
y(t0,tf )∈R4

=

(∫ tf

t0

FT(t)F (t)dt

)
︸ ︷︷ ︸

W (t0,tf )∈R4×4

w. (4.12)

In the above equation, y(t0, tf ) is known because r(t) and p(t) are known for all t ≥ t0.

On the other hand the matrix W (t0, tf ) captures the information about the tracker’s

trajectory that decides observability of the target. To be more precisely, define two maps

f : R3 → R4, f(q) =

[
‖q‖2

q

]
,

g : R4 → R4, g(w) = W (t0, tf )w.

(4.13)

By the definition, g ◦ f : R3 → R4 maps the target’s position q to the measurement

output y(t0, tf ). The observability problem now is equivalent with finding condition on

the tracker’s trajectory under which this map is injective1, that is, given the measure-

ment output y(t0, tf ), under which condition on p(t) then q is uniquely determined from

y(t0, tf ). We obtain the following result.

Theorem 4.1. Consider the target localization problem with single tracker where the

target is fixed. Then, the target’s state x , q is uniquely determined if and only if the

columns of F (t), given by (4.10), are LI on the interval [t0, tf ], where tf > t0.

Proof:

i. Sufficient: if the columns of F (t) are LI on [t0, tf ], (i.e. W (t0, tf ) is non-singular,

due to Lemma 4.1) then the map g is also injective, hence g ◦ f is injective (because

f is injective), and therefore q is uniquely determined from y(t0, tf ).

ii. Necessary: we now show that if q is uniquely determined from y(t0, tf ) (i.e. g ◦ f

is injective) then the columns of F (t) must be LI on [t0, tf ]. We prove this by

1 a map (function) f : X → Y is called injective (also known as one-to-one) if for all x1, x2 ∈ X,
f(x1) = f(x2) implies that x1 = x2. It is also easy to verify that if f, g are two injective maps then g ◦ f
is injective as well.
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contradiction.

Suppose that g ◦ f is injective but the columns of F (t) are not LI on [t0, tf ]. Let

α = [α1,α
T
2 ]T ∈ R4 be a generic nonzero vector with α1 ∈ R,α2 ∈ R3. Since the

columns of F (t) are not LI on [t0, tf ] then there exist some α ∈ R4,α 6= 0 s.t.

F (t)α = α1 + αT
2 p(t) = 0 for all t. There are two possible cases that satisfy the

last equation.

(a) α1 = 0, α2 6= 0, i.e. α has the form α = [0,αT
2 ]T. An example of this case is

p(t) = [t, 2t, 5t].

(b) α1 6= 0 and α2 = α1β with some β 6= 0, i.e. α has the form α = α1[1,βT]T.

An example of this case is p(t) = [t+ 1, 2t+ 2, t].

With the first case, define q1 = α2/2 and q2 = −α2/2. Clearly q1 6= q2 6= 0,

however,

g ◦ f(q1)− g ◦ f(q2) = W (t0, tf )

[
0
α2

]
︸ ︷︷ ︸

=W (t0,tf )α

= 0, (4.14)

implying that g◦f is non-injective, which contradicts with the beginning assumption

that this map is injective.

With the second case, define q = β/‖β‖2. Clearly q 6= 0, however

g ◦ f(q) =
1

α1‖β‖2W (t0, tf )α1

[
1
β

]
= 0, (4.15)

implying that the map g◦f is non-injective (because g◦f(0) = 0), which contradicts

with the beginning assumption that this map is injective.

So we conclude that if g ◦ f is injective then the columns in F (t) are LI on [t0, tf ]).

�

We now discuss the geometrical intuition behind the condition given in Theorem 4.1. For

this purpose, let us examine the following tracker’s trajectories for the 2D cases:

p(t) = [t, 2t]T, p(t) = [t+ 2, 5t]T, p(t) = [t, sin(t)]T. (4.16)

With the first trajectory, the matrix F (t) in (4.10) is given by

F (t) = [1 t 2t].
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It is easy to see that for any α3 6= 0 and α2 = −2α3 the equation

α1 + α2t+ α32t = α1 + (α2 + 2α3)t = 0

holds true for all t. Hence, according to Definition 4.2 the columns in F (t) are not LI

on every interval in R, which violates the conditions in Theorem 4.1, implying that the

target is not localizable with the first trajectory. With a similar procedure, we can verify

that the target is not localizable with the second trajectory but observable with the third

trajectory in (4.16).

The common geometrical interpretation of the first two trajectories is that as time evolves

they draw straight-lines on the 2D plane. In fact, the theorem implies that the target’s

position can not be determined if the tracker moves along any straight line, since every

straight-line type trajectory violates the linear independence condition of the columns in

F (t). This is not surprising and can be explained intuitively from a geometrical stand-

point. Obviously, if the tracker moves along a straight line, then there exists an reflected

image (in 2D) or a set of reflected images (in 3D) of the target about that line such that

the ranges from tracker to the target and to its reflected image are the same, thus making

it impossible to distinguish the true target and its reflected images, see a trajectory in

Fig.4.2 (solid-black) as an illustration for the case of 2D.

In practice, it is common to use an under-actuated vehicle (e.g. Medusa class vehi-

cle [Abreu et al., 2016c]) as the tracker to localize the target. In 2D, the xI − yI plane

for example, assuming that the sideslip angle can be neglected, the motion of the vehicle

can be simply described as

ṗx = ux , v cos(ψ), ṗy = uy , v sin(ψ), (4.17)

where v is the linear speed and ψ is the heading of the vehicle. For this type of tracker, the

condition in Theorem 4.1 implies that it is sufficient to localize the target if the tracker

moves with non zero speed (v 6= 0) and changes its heading (ψ) at least one time in the

interval (t0, tf ) (see the red curve in Fig.4.2 as an example of this type of trajectory where

ψ̇(t) 6= 0 for all t ∈ [t0, tf ]). This can be extended to 3D analogously, and show that it is

sufficient for target localization that the tracker moves with non-zero speed and change

at least any two Euler angles at any different times in the interval (t0, tf ).
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Target

Target’s image

Exciting 
trajectory Non-exciting 

trajectory

Figure 4.2: Localization of a fixed target with a single tracker. The black trajectory is not
“exciting” enough for localizing the target. The target is observable if the tracker
performs the red trajectory.

4.4.2 Target moves with unknown constant velocity vector

From the target’s model (4.3) and the range measurement model (4.5) we obtain the

nonlinear system

q̇ = v

v̇ = 0

r(t) = ‖p(t)− q(t)‖,

(4.18)

where the system’s state is the target’s state x = col(q,v) ∈ R6 while the tracker’s

trajectory p can be viewed as the system’s input. Observability of this system, that is,

whether or not the target is localizable (observable) depends on the system’s input p.

In this section we propose two methods to derive conditions on the tracker’s trajectory

under which the target is observable. The first uses a the methodology proposed in

the previous section whereas, the second is along the lines of the work in [Batista et al.,

2011,Indiveri et al., 2016], i.e. observability of the nonlinear system (4.18) can be obtained

from observability of an augmented LTV system.

Method 1:

It follows from (4.18) that

q(t) = q0 + δ(t)v, (4.19)

where q0 , q(t0) and

δ(t) , t− t0. (4.20)
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Expanding the range measurement equation in (4.18) we obtain

r2(t) = ‖p(t)− q(t)‖2

(4.19)
= ‖p(t)‖2 + ‖q0‖2 + 2δ(t)qT

0 v + δ2(t)‖v‖2 − 2pT(t)q0 − 2δ(t)pT(t)v.
(4.21)

Define

F (t) ,
[
1 2δ(t) δ2(t) −2pT(t) −2δ(t)pT(t)

]
(4.22)

and w , [‖q0‖2,qT
0 v, ‖v‖2,qT

0 ,v
T]T ∈ R9, (4.21) can be rewritten as

y(t) = F (t)w, (4.23)

where y(t) is given by (4.9). Multiplying both sides of the above equation with FT(t)

then integrating it over [t0, tf ] yields

∫ tf

t0

FT(t)y(t)dt︸ ︷︷ ︸
y(t0,tf )∈R9

=

(∫ tf

t0

FT(t)F (t)dt

)
︸ ︷︷ ︸

W (t0,tf )∈R9×9

w. (4.24)

We now define two maps

f : R6 → R9, f(q0,v) = col(‖q0‖2,qT
0 v, ‖v‖2,q0,v)

g : R9 → R9, g(w) = W (t0, tf )w.
(4.25)

By the definition, g◦f : R6 → R9 maps the initial target’s state (q0,v) to the measurement

output y(t0, tf ). The observability problem is equivalent with finding condition on the

W (t0, tf ) under which the map g ◦ f is injective.

Theorem 4.2. Consider the nonlinear system (4.18). Then, this system is observable

at t0 i.e. the initial target’s state x0 , col(q0,v) is uniquely determined if the columns in

F (t), given by (4.22), are LI on the interval [t0, tf ], where tf > t0.

Proof: Clearly, the map f defined by (4.25) is injective. Also, because the columns of F (t)

are LI on [t0, tf ], (i.e. W (t0, tf ) is non-singular due to Lemma 4.1) then g is also injective.

As a consequence, g ◦ f is injective (recall that the composition of two injective maps is

an injective map). We conclude that (q0,v) is uniquely determined from y(t0, tf ), or in

other words the nonlinear system is observable at t0. �
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Remark 4.1. Note that the condition stated in Theorem 4.2 is sufficient. The necessary

condition is an open problem for future work.

Method 2:

Expanding the range measurement equation in (4.18) we obtain

r2(t) = ‖p(t)− q(t)‖2

(4.19)
= ‖p(t)‖2 − 2pT(t)q(t) + 2δ(t)qT

0 v + ‖q0‖2 + δ2(t)‖v‖2.
(4.26)

Define

z = col(z1, z2, z3, z4, z5] , col(‖q0‖2,qT
0 v, ‖v‖2,q,v) ∈ R9. (4.27)

By the definition, it follows from (4.18) that

ż =


01×1 01×1 01×1 01×3 01×3

01×1 01×1 01×1 01×3 01×3

01×1 01×1 01×1 01×3 01×3

03×1 03×1 03×1 03×3 I3×3

03×1 03×1 03×1 03×3 03×3


︸ ︷︷ ︸

,A

z. (4.28)

Furthermore, let

C(t) =
[
1 2δ(t) δ2(t) −2pT(t) 01×3

]
∈ R1×9. (4.29)

Then, from (4.26), (4.28), and (4.29) we obtain the LTV system, described by

ż = Az

y(t) = C(t)z,
(4.30)

where y(t) is given by (4.9). At this point, we have transformed the original system (4.18)

with the state x , col(q,v) ∈ R6 into the LTV system (4.30) with state z ∈ R9. Compared

with the original system, the LTV has three additional states, namely, ‖q0‖2,qT
0 v, and

‖v‖2. We now state conditions for observability of the LTV system, from which we draw

conclusions for the observability of the original system.

Lemma 4.2. Consider the LTV system described by (4.30). Then, this LTV system is
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observable at t0, i.e. z(t0) is uniquely determined if and only if the columns of F (t), given

by (4.22), are LI on [t0, tf ], where tf > t0.

Proof: In the theory of LTV systems (e.g. Theorem 5-9 in [Chen, 1984]) it is well-

known that the system (4.30) is observable on the interval [t0, tf ] if and only if the Gramian

matrix, defined by

W (t0, tf ) =

∫ tf

t0

eA
T(t−t0)CT(t)C(t)eA(t−t0)dt (4.31)

is non-singular. Note that with matrix A in (4.28), An = 09×9 for all n >= 2 and therefore

eA(t−t0) = I9×9 + Aδ(t). Thus, it is straightforward to show that

C(t)eA(t−t0) =
[
1 2δ(t) δ2(t) −2pT(t) −2δ(t)pT(t)

]︸ ︷︷ ︸
=F (t), see (4.22)

. (4.32)

Invoking Lemma 4.1, we conclude that the Grammian matrix given by (4.31) is non-

singular if and only if the columns of F (t), given by (4.22), are LI in [t0, tf ]. This concludes

the proof. �

Observability of the original system (4.18) is stated as follow.

Theorem 4.3. Consider the original nonlinear system (4.18). If the columns of F (t),

given by (4.22), are LI on the interval [t0, tf ], then

• the original nonlinear system is observable at t0, i.e. the initial target’s state x0 =

col(q0,v) is uniquely determined.

• a state estimator for the LTV system with global convergence of estimation errors

is also a state estimator for the original nonlinear system with global convergence of

the estimation errors.

Proof: we prove this theorem by showing that with the same tracker’s trajectories

and the range measurement the state of the LTV system matches the state of the original

nonlinear system. First, given the LTV system (4.30), we obtain

z(t) = eA(t−t0)z(t0)
An=0,∀n≥2

= (I9×9 + Aδ(t)) z(t0). (4.33)

114



4.4 Target localization with a single tracker

Substituting A given by (4.28) and the relation given by (4.27) in the above equation

yields

z(t) =


z1(t0)
z2(t0)
z3(t0)

z4(t0) + δ(t)z5(t0)
z5(t0)

 . (4.34)

Thus, the output of the LTV system (4.30) is given by

y(t) = C(t)z(t)

= z1(t0) + 2δ(t)z2(t0) + δ2(t)z3(t0)− 2pT(t)z4(t0)− 2δ(t)pT(t)z5(t0).
(4.35)

Substituting y(t) given by (4.9) in the above equation yields

r(t) = ‖p(t)‖2 +z1(t0)+2δ(t)z2(t0)+δ2(t)z3(t0)−2pT(t)z4(t0)−2δ(t)pT(t)z5(t0). (4.36)

Comparing (4.21) - the output of the original nonlinear system with (4.36) yields

0 =(z1(t0)− ‖q0‖2) + 2δ(t)(z2(t0)− qT
0 v) + δ2(t)(z3(t0)− ‖v‖2)

− 2pT(t)(z4(t0)− p0)− 2δ(t)pT(t)(z5(t0)− v).
(4.37)

Since the columns of F (t), given by (4.22), are LI on [t0, tf ] the relation in (4.37) holds

for all t ∈ [t0, tf ] if and only if

z1(t0) = ‖q0‖2, z2(t0) = qT
0 v, z3(t0) = ‖v‖2, z4(t0) = q0, z5(t0) = v. (4.38)

This implies that the state of the LTV system matches with the state of the original

system. This concludes the proof. �

Remark 4.2. Although the conditions on the tracker’s trajectory obtained by the two

methods are identical the first method is much simpler. However, the second method

offers an alternative option to design a filter to estimate the target’s state which will be

clarified in next remark.

Remark 4.3. There are two ways to estimate the target’s state. The first is to design an

Extended Kalman Filter (EKF) based on the nonlinear model (4.18). The second, thanks
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to the second result in the Theorem 4.3, is to design a Kalman Filter (KF) based on

the LTV model (4.30). The main advantage of the former over the latter is that it runs

upon a lower dimension model. Compared with the first EKF, the KF evolves in a higher

dimensional state space (R9 vs R6) but theoretically, it can guarantee global convergence

of the estimation errors, provided that the LTV system satisfies the conditions of uniform

complete observability [Batista et al., 2011].

We now discuss several types of trajectory that satisfy the condition given in The-

orem 4.3 (recall that it is equivalent with condition in Theorem 4.2). In 2D, it can be

checked (using either the definition of linear independence of functions or their Wronskian

(Theorem 5-2 in [Chen, 1984])) that every “cycloid-type” trajectory for the tracker given

in the form p(t) = [px(t), py(t)]
T = [rx sin(ωt) + cxt, ry cos(ωt) + cyt]

T with rx, ry, ω 6= 0

satisfies the condition in the theorem. See Fig.4.3 as a graphical presentation of several

trajectories given by the above formula. Similarly, in 3D, every “helix-type” trajectories

of the form p(t) = [rx sin(ω1t) + cxt, ry cos(ω1t) + cyt, rz sin(ω2t) + czt]
T with ω1 6= ω2 6= 0

satisfies the condition in the theorem. However, “pure helix” trajectories (obtained with

rz = 0) do not satisfy the condition. Thus, we can not conclude whether or not the

target’s states (both the position and velocity vector) are observable since the condition

given is sufficient. From a system identification point of view, this can be explained that

the full state of the target may not be “completely” observable. That is, if c2 = 0 or

ω2 = 0 then the relative velocity vector between the tracker and the target is given by

ũ(t) = u(t)− v(t) = [?, ?, c1 − vz], where vz is the third component of v. Since vz is con-

stant hence the third component of the relative vector ũ is constant and, as a consequence,

this information may not be “sufficient” to identify the third component of the target’s

velocity vector v. Therefore, the full target’s state might not be completely observable

with “pure helix” trajectories.

Figure 4.3: Illustration of several “cycloid-type” trajectories.
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4.4.3 Target moves with unknown constant acceleration vector

From the target’s model (4.4) and the range measurement model (4.5) we obtain the

nonlinear system

q̇ = v

v̇ = a

ȧ = 0

r(t) = ‖p(t)− q(t)‖,

(4.39)

where the system’s state is the target’s state x , col(q,v, a) ∈ R9 while the tracker’s

trajectory p can be viewed as the system’s input. In this case, the observability stated

in Problem 4.1 is equivalent to finding conditions for tracker’s trajectory under which

system (4.39) is observable, i.e. the target is localizable.

Similar to the previous section, we propose two methods to solve this problem.

Method 1:

From (4.39) we obtain

q(t) = q0 + δ(t)v0 + 0.5δ2(t)a, (4.40)

where q0 , q(t0), v0 , v(t0) and δ(t) is given by (4.20). Substituting (4.40) in the range

measurement equation (4.39) then extending it yields

r2(t) =‖p(t)− q(t)‖2

(4.40)
= ‖p(t)‖2 + ‖q0‖2 + 2δ(t)qT

0 v0 + δ2(t)
(
qT

0 a + ‖v0‖2)+ δ3(t)vT
0 a + 0.25δ4(t)‖a‖2

− 2pT(t)q0 − 2δ(t)pT(t)v0 − δ2(t)pT(t)a.
(4.41)

Define

F (t) ,
[
1 2δ(t) δ2(t) δ3(t) 0.25δ4(t) −2pT(t) −2δ(t)pT(t) −δ2(t)pT(t)

]
(4.42)

and w , col
(
‖q0‖2,qT

0 v0,q
T
0 a + ‖v0‖2,vT

0 a, ‖a‖2,q0,v0, a
)
∈ R14, (4.41) can be rewrit-

ten as

y(t) = F (t)w, (4.43)
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where y(t) is given by (4.9). Proceed similarly to Method 1 in the previous section, we

obtain the following result.

Theorem 4.4. Consider the nonlinear system (4.39). Then, the system is observable at

t0 i.e. the initial target’s state x0 , col(q0,v0, a) is uniquely determined if the columns

in F (t), given by (4.42), are LI on the interval [t0, tf ], where tf > t0.

Proof of this theorem can be done similarly to that of Theorem 4.2.

Method 2:

Expanding the range measurement equation in (4.39) we obtain

r2(t) =‖p(t)− q(t)‖2

(4.40)
= ‖p(t)‖2 + ‖q0‖2 + 2δ(t)qT

0 v0 + δ2(t)
(
qT

0 a + ‖v0‖2)+ δ3(t)vT
0 a

+ 0.25δ4(t)‖a‖2 − 2pT(t)q(t)

(4.44)

Define

z =



z1,
z2

z3

z4

z5

z6

z7

z8


,



‖q0‖2

qT
0 v0

qT
0 a + ‖v0‖2

vT
0 a

‖a‖2

q
v
a


∈ R14. (4.45)

Then, it follows from (4.39) that

ż =



01×1 01×1 01×1 01×1 01×1 01×3 01×3 01×3

01×1 01×1 01×1 01×1 01×1 01×3 01×3 01×3

01×1 01×1 01×1 01×1 01×1 01×3 01×3 01×3

01×1 01×1 01×1 01×1 01×1 01×3 01×3 01×3

01×1 01×1 01×1 01×1 01×1 01×3 01×3 01×3

03×1 03×1 03×1 03×1 03×1 03×3 I3×3 03×3

03×1 03×1 03×1 03×1 03×1 03×3 03×3 I3×3

03×1 03×1 03×1 03×1 03×1 03×3 03×3 03×3


︸ ︷︷ ︸

,A

z. (4.46)
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Furthermore, let

C(t) =
[
1 2δ(t) δ2(t) δ3(t) 0.25δ4(t) −2pT(t) 01×3 01×3

]
∈ R1×14. (4.47)

Then, from (4.45), (4.46), and (4.47) we obtain the LTV system, described by

ż = Az

y(t) = C(t)z,
(4.48)

where y(t) is given by (4.9). At this point, we have transformed the original nonlinear

system (4.39) with the state x = col(q,v, a) ∈ R9 into the LTV system (4.48) with state

z ∈ R14. We now state conditions for observability of the LTV system, from which we

draw conclusions for the observability of the original nonlinear system.

Lemma 4.3. Consider the LTV system described by (4.48). Then, the LTV system is

observable at t0, i.e. z(t0) is uniquely determined if and only if the columns of F (t), given

by (4.42), are LI on [t0, tf ], where tf > t0.

Proof: The proof can be done similarly to the proof of Lemma 4.2. �

Theorem 4.5. Consider the original nonlinear system (4.39). If the columns of F (t),

given by (4.42), are LI on the interval [t0, tf ], then

• the original system is observable at t0, i.e. the initial target’s state x0 = col(q0,v0, a)

is uniquely determined.

• a state estimator for the LTV system with global convergence of estimation errors

is also a state estimator for the original nonlinear system with global convergence of

the estimation errors.

Proof of this theorem can be done similarly to that of Theorem 4.3.

Remark 4.4. There are two ways to estimate the target’s state. The first is to design

an EKF based on the nonlinear model (4.39). The second, thanks to the second result in

Theorem 4.5, is to design an KF based on the LTV model (4.48).
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4.5 Target localization with two trackers

We now consider the cases when the target is localized by two trackers. For the sake of

consistency, we keep using the notation in the previous section with an extra subscript

i; i ∈ {1, 2} to index the trackers. Specifically, for each tracker i, pi denotes its position

vector and ri is the range measurement from the tracker to the target. We now derive

the conditions for the motion of the trackers under which the target’s state is observable.

4.5.1 Target is fixed

We start by considering the simplest case where the target is fixed. For each tracker i,

from the target’s model (4.2) and the range measurement model (4.5) we obtain

r2
i (t) = ‖pi(t)− q‖2 = ‖pi(t)‖2 − 2pT

i (t)q + ‖q‖2 (4.49)

Subtracting the two ranges we obtain

y(t) = 2(p2(t)− p1(t))Tq, (4.50)

where

y(t) , r2
1(t)− r2

2(t) + ‖p2(t)‖2 − ‖p1(t)‖2. (4.51)

Note that y(t) is known for all t because the ranges and the trackers’ trajectories are

known.

Theorem 4.6. Consider the target localization problem stated in Problem 4.1, where

the target is fixed and two trackers are used. Then, the target is localizable, i.e. the target’s

position q is uniquely determined if and only if the columns in matrix F (t) ∈ R1×3, given

by

F (t) = [p2(t)− p1(t)]T (4.52)

are LI in the interval [t0, tf ] for tf > 0.

Proof: The proof starts with (4.50) and can be done similarly to the proof of Theorem

4.1 with the help of Lemma 4.1. �

We now discuss the geometrical intuition behind the condition stated in Theorem 4.6. For

the sake of clarity, we consider the case where one of the trackers is stationary. Without
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4.5 Target localization with two trackers

loss of generality, fix tracker 2, i.e. p2(t) = c for all t ≥ t0, where c is a constant vector.

This makes F (t) = [c− p1(t)]T. Hence, for 2D, the necessary and sufficient condition for

the columns of F (t) to be LI on [t0, tf ] implies that the trajectory of tracker 1 must not

move along the line that connects two points p1(t0) and c. This is illustrated in Fig.4.4

where it can be seen that the ranges from the trackers to the target and the target’s

reflected image via the line are the same, making it impossible to distinguish the true

target and its reflected image. However, if tracker 1 does not go along with that line (the

red line in the figure for example) then the position of target can be uniquely determined.

Target’s image

Target

Exciting 
trajectory

Non-exciting 
trajectory

Figure 4.4: Localization of a fixed target using two trackers.

4.5.2 Target moves with unknown constant velocity vector

From the target model (4.3) and the range measurement model (4.5), for each i ∈ {1, 2}
we have

r2
i (t) =‖pi(t)− δ(t)v − q(t0)‖2

=‖pi(t)‖2 − 2δ(t)pT
i (t)v − 2pT

i (t)q0 + ∆(t),
(4.53)

where

∆(t) , ‖δ(t)v + q0‖2. (4.54)

Thus, subtracting r2
2(t) from r2

1(t) yields

r2
1(t)− r2

2(t) =‖p1(t)‖2 − ‖p2(t)‖2

−2(p1(t)− p2(t))Tq0

−2δ(t)(p1(t)− p2(t))Tv.

(4.55)
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4.5 Target localization with two trackers

Recall that for this scenario x0 = col(q0,v) is the vector of the initial target’s state.

Equation (4.55) can be rewritten as

y(t) =
[
(p2(t)− p1(t))T δ(t)(p2(t)− p1(t))T

]
x0, (4.56)

where y(t) is given by (4.51). We obtain the following result.

Theorem 4.7. Consider the target localization problem defined in Problem 4.1, where

the target moves with unknown velocity vector given by model (4.4) and is localized by two

trackers. Then, the target is localizable, i.e. the initial target’s state x0 = col(qT
0 ,v) is

uniquely determined if and only if the columns in matrix F (t) ∈ R1×6, given by

F (t) = [(p2(t)− p1(t))T δ(t)(p2(t)− p1(t))] (4.57)

are LI in interval [t0, tf ] for tf > 0.

Proof: The proof starts with (4.56) and can be done similarly to the proof of Theorem

4.1 with the help of Lemma 4.1. �

Apparently, the condition for trackers’ trajectories given in Theorem 4.7 is less demanding

than that in Theorem 4.2, where a single tracker is used to localize the target. Note also

that the condition stated in former theorem is necessary and sufficient whereas, that in

the latter theorem is sufficient.

4.5.3 Target moves with unknown constant acceleration vector

From the target model (4.4) and the range measurement model (4.5), for each tracker i

we obtain

r2
i (t) =

∥∥pi(t)− δ(t)v0 − 0.5δ2(t)a− q0

∥∥2

= ‖pi(t)‖2 − 2δ(t)pT
i (t)v0 − 2pT

i (t)q0 − δ2(t)pT
i (t)a + ∆(t)

(4.58)

for all i ∈ {1, 2} where

∆(t) ,
∥∥δ(t)v0 + 0.5δ2(t)a + q0

∥∥2
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4.6 Range-based navigation with single beacon

Subtracting r2
2(t) from r2

1(t) yields

r2
1(t)− r2

2(t) =‖p1(t)‖2 − ‖p2(t)‖2

−2(p1(t)− p2(t))Tq0

−2δ(t)(p1(t)− p2(t))Tv0

−δ2(t)(p1(t)− p2(t))Ta.

(4.59)

Recall that x0 = col(q0,v0, a) is the vector of the initial target’s state.

y(t) =
[
(p2(t)− p1(t))T δ(t)(p2(t)− p1(t))T δ2(t)(p2(t)− p1(t))T

]
x0. (4.60)

where y(t) is given by (4.51). We obtain the following result.

Theorem 4.8. Consider the target localization problem stated in Problem 4.1, where

the target moves with unknown constant acceleration vector given by model (4.4) and

is localized by two trackers. Then, the target is localizable, i.e. the initial target’s state

x0 = col(q0,v0, a) is uniquely determined if and only if the columns in matrix F (t) ∈ R1×9,

given by

F (t) = [(p2(t)− p1(t))T δ(t)(p2(t)− p1(t)) δ2(t)(p2(t)− p1(t))] (4.61)

are LI in interval [t0, tf ] for tf > 0.

Proof: The proof starts with (4.60) and can be done similarly to the proof of Theorem

4.1 with the help of Lemma 4.1. �

Obviously, the condition for trackers’ trajectories given in Theorem 4.8 is less demanding

than that in Theorem 4.4, where a single tracker is used to localize the target.

4.6 Range-based navigation with single beacon

In this section we solve the problem of range-based navigation stated in Problem 4.2.

Let

r = p− s. (4.62)
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4.6 Range-based navigation with single beacon

Because s is known, p is uniquely determined if r is uniquely determined. From (4.6),

(4.7), and (4.62) we obtain the nonlinear system

ṙ = u + vc

v̇c = 0,

r = ‖r‖

(4.63)

We now derive condition on the vehicle input u such that the system (4.63) is observable.

This can be done using either one of the two methods proposed in the previous sections

that are presented next.

4.6.1 Method 1:

From (4.62) and the first two equations of (4.63) we obtain the relation

r(t) = r0 + λ(t) + δ(t)vc, (4.64)

where r0 , r(t0) = p(t0)− s and

λ(t) ,
∫ t

t0

u(τ)dτ. (4.65)

Equation (4.64) implies that

r2(t) = ‖r0‖2 + ‖λ(t)‖2 + δ2(t)‖vc‖2 + 2λT(t)r0 + 2δ(t)λT(t)vc + 2δ(t)rT
0 vc. (4.66)

Define

F (t) ,
[
1 2δ(t) δ2(t) 2λT(t) 2δ(t)λT(t)

]
, (4.67)

y(t) = r2(t)− ‖λ(t)‖2, (4.68)

and w , col(‖r0‖2, rT
0 vc, ‖vc‖2, r0,vc) ∈ R9, (4.66) can be rewritten as

y(t) = F (t)w. (4.69)
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4.6 Range-based navigation with single beacon

Note that y(t), given by (4.68), is known because r(t) and λ(t) are known. Multiplying

both sides of the above equation with FT(t) then integrating it over [t0, tf ] yields

∫ tf

t0

FT(t)y(t)dt︸ ︷︷ ︸
y(t0,tf )∈R9

=

(∫ tf

t0

FT(t)F (t)dt

)
︸ ︷︷ ︸

W (t0,tf )∈R9×9

w. (4.70)

Define two maps

f : R6 → R9, f(r0,vc) = col(‖r0‖2, rT
0 vc, ‖vc‖2, r0,vc)

g : R9 → R9, g(w) = W (t0, tf )w.
(4.71)

By the definition, g ◦ f : R6 → R9 maps the initial system’s state (r0,vc) to the measure-

ment output y(t0, tf ). The observability problem now is equivalent with finding condition

on the vehicle’s velocity vector u under which this map is injective.

Theorem 4.9. Consider the nonlinear system (4.63). Then, the system is observable at

t0 i.e. the initial target’s state x0 , col(p0,vc) is uniquely determined if the columns in

F (t), given by (4.67), are LI on the interval [t0, tf ], where tf > t0.

Proof: clearly, the map f in (4.71) is injective. If the columns in F (t) are LI then

W (t0, tf ) is non-singular (due to Lemma 4.1), thus the map g is injective as well. Conse-

quently, g◦ f is injective, which implies that (r0,vc) is uniquely determined from y(t0, tf ).

Recall that r0 = p0− s where s is known, thus the injectivity of g ◦ f implies that (p0,vc)

is uniquely determined as well. �

We shall discuss the condition stated the Theorem 4.9 after deriving an identical condition

using the second method presented next.

4.6.2 Method 2:

This method is along the lines of the work in [Batista et al., 2011, Indiveri et al., 2016].

The main idea of this approach can be summarized by three steps: i) first, build a LTV

system from the original nonlinear system (4.63), ii) second, derive condition on the

vehicle’s input u for observability of the LTV system, iii) finally, conclude observability

of the original nonlinear system from observability of the LTV system. We go along this

line but we will show that our LTV system being built has some advantages compared

with the LTV systems in [Batista et al., 2011, Indiveri et al., 2016].

125



4.6 Range-based navigation with single beacon

First, (4.64) implies that ‖r(t)− λ(t)‖2 = ‖r0 + δ(t)vc‖2 which is equivalent to

r2(t) + ‖λ(t)‖2 = ‖r0‖2 + 2δ(t)rT
0 vc + δ2(t)‖vc‖2 + 2λT(t)r(t). (4.72)

Define

z = col(z1, z2, z3, z4, z5] , col(‖r0‖2, rT
0 vc, ‖vc‖2, r,vc) ∈ R9. (4.73)

Taking the time derivative of z with respect to (4.63) and (4.62) yields

ż =


01×1 01×1 01×1 01×3 01×3

01×1 01×1 01×1 01×3 01×3

01×1 01×1 01×1 01×3 01×3

03×1 03×1 03×1 I3×3 03×3

03×1 03×1 03×1 03×3 03×3


︸ ︷︷ ︸

,A

z +


01×3

01×3

01×3

I3×3

03×3


︸ ︷︷ ︸
,B

u. (4.74)

Furthermore, let

C(t) =
[
1 2δ(t) δ2(t) 2λT(t) 01×3

]
∈ R1×9. (4.75)

and

y(t) , r2(t) + ‖λ(t)‖2. (4.76)

As a consequence, from (4.72)- (4.76) we obtain a LTV system described by

ż = Az +Bu

y(t) = C(t)z.
(4.77)

At this point, we have transformed the original nonlinear system (4.63) with the state

x , col(r,vc) ∈ R6 into the LTV system (4.77) with state z ∈ R9. Compared with the

original system, the LTV has three additional states, namely, ‖r0‖2, rT
0 vc and ‖vc‖2. We

now state conditions for observability of the LTV system, from which we draw conclusions

for the observability of the original nonlinear system.

Lemma 4.4. Consider the LTV system described by (4.77). Then, the LTV system is

observable at t0, i.e. z(t0) is uniquely determined if and only if the columns of F (t), given

by (4.67), are LI on [t0, tf ], where tf > t0.

Proof: In the theory of LTV systems (e.g. Theorem 5-9 in [Chen, 1984]) it is well-
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4.6 Range-based navigation with single beacon

known that the LTV system (4.77) is observable at t0 if and only if the Gramian matrix,

defined by

W (t0, tf ) =

∫ tf

t0

eA
T(t−t0)CT(t)C(t)eA(t−t0)dt (4.78)

is non-singular. Note that with matrix A in (4.74), An = 09×9 for all n >= 2 and therefore

eA(t−t0) = I9×9 + Aδ(t). Thus, it can be shown that

C(t)eA(t−t0) =
[
1 2δ(t) δ2(t) 2λT(t) 2δ(t)λT(t)

]︸ ︷︷ ︸
=F (t),see (4.67)

. (4.79)

Invoking Lemma 4.1, we conclude that the Grammian matrix in (4.78) is non-singular if

and only if the columns of F (t) are LI in [t0, tf ] . This concludes the proof. �

Theorem 4.10. Consider the original nonlinear system (4.63). If the columns of F (t),

given by (4.67), are LI on the interval [t0, tf ], then

• the original nonlinear system is observable at t0, i.e. the initial state x0 = col(r0,vc)

is uniquely determined.

• a state estimator for the LTV system with global convergence of estimation errors

is also a state estimator for the original nonlinear system with global convergence of

the estimation errors.

Proof: the proof of this theorem can be done simply as that of Theorem 4.3. �

4.6.3 Discussion

As we have shown in the previous section (specifically, in Theorem 4.9 and Theorem 4.10)

that the two proposed methods obtain identical sufficient condition for observability of

the nonlinear system (4.63). It states that the nonlinear system is observable at any t0 if

the column in F (t), given by (4.67), are LI on [t0, tf ]. This condition is almost equivalent

with the sufficient condition stated in Theorem 1 of [Batista et al., 2011] where it states

roughly that the nonlinear system (4.63) is observable at t0 if the columns in

H(t) ,
[
δ(t) δ2(t) λT(t) δ(t)λT(t)

]
(4.80)
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4.6 Range-based navigation with single beacon

are LI on the interval [t0, tf ]. In order to reach this conclusion the authors in [Batista

et al., 2011] transformed the original nonlinear system (4.63) into a LTV system as the

form

ż = Az(t,u(t), y(t))z +Bzu

yz(t) = Czz.
(4.81)

Then, the observability of the nonlinear system is drawn from observability of the LTV

system. Because the matrix Az in (4.81) depends on the input u(t) and y(t) this makes

the analysis of the Gramian of the LTV system (4.81) much more challenging and in-

volved. In contrast, with our approaches the observability condition can be obtained in

a very simple procedure as elaborated in Method 1, without the need of building a LTV

system. With our second method the matrix A in our LTV system, described by (4.77), is

constant and has many zeros entries, rendering the observability analysis very simple, as

shown in the proof of Lemma 4.4. Furthermore, our LTV system does not need to assume

y(t) 6= 0 to make the matrix Az well defined as in the work of [Batista et al., 2011].

Observability of system (4.63) was also considered in [Indiveri et al., 2016] and the proce-

dure adopted to build an equivalent LTV system in that reference inspired the formulation

in our second method. In this reference, the author built a LTV system with the form

ż = Az +Bzu

y(t) = C(t)z.
(4.82)

where y(t) = r2(t) + ‖λ(t)‖2− r2(t0). The main limitation of this LTV system is that the

new measurement output y(t) depends on the measurement of r(t0) at the initial time t0,

thus the error in measurement of r(t0) propagates to every measurement of y(t) thereafter.

In our formulation, this can be avoided by let r(t0) as a variable to be estimated. It is

also worthy to note that the conditions derived in the same reference are necessary, which

is not enough to characterize the type of vehicle’s input required for observability of the

vehicle’s state - the main goal in the context of range-based navigation.

Remark 4.5. There are two ways to estimate the target’s state. The first is to use an

EKF for the original nonlinear system (4.63). The second is to use an KF for the LTV

system (4.77). The latter can ensure global convergence provided that the LTV system

satisfies the conditions of uniform complete observability.
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4.7 Simulation examples

4.7.1 Example 1 - target localization

In this section we present simulation results for the case presented in Section 4.4.2 where

a tracker is used localize a target whose velocity is assumed to change slowly so that its

motion can be approximated by the target’s model (4.3). We assume that the tracker and

the target undergo motions in 2D, in the horizontal plane, along trajectories defined by the

parameters in Table 4.1. It can be checked that the tracker’s trajectory given in the table

satisfies the observability conditions in Theorem 4.2. In order to estimate the target’s

Table 4.1: Simulation setup for Example 1

Parameters

Trajectory: q(t) = [20 sin(0.01t+ π), 0.3t] (m)

Target Velocity v(t) = [0.2 cos(0.01t+ π), 0.3] (m/s)

Tracker Velocity: p(t) = [50 sin(0.1t) + 0.4t+ 100, -50 cos(0.1t)] m

Q = 10e-6diag(10, 10, 1, 1)

EKF R = 1

Q = 1e-10diag(10, 1, 0.1, 1, 1, 10, 10)

KF-LTV R = 100

state and for comparison purposes, we run two filters as suggested in Remark 4.3. The

first filter, named EKF, was designed based on the nonlinear model (4.18) whereas, the

second model named KF-LTV, was constructed based on the LTV model (4.30). The two

filters are initialized with the same initial guess for the target’s position and velocity, with

q̂(0) = [-30; -60](m) and v̂(0) = [0, 0](m/s). Random noises are also added to range’s and

tracker’s position measurements. Specially, Gaussian noise with zero mean and standard

deviation of 0.5m was added to range measurements, while Gaussian noise with zero mean

and covariance of diag(0.5, 0.5)m was added to the measurements of the tracker’s position.

The performance of the two filters is illustrated in Fig.4.5 and Fig.4.6. It can be seen

clearly that they estimate relatively well the target’s state, i.e. the estimated target’s

position and velocity given by the filters converge closely to the true target’s position

and velocity. This implies the trajectory adopted for the tracker not only guarantees

observability of target’s state but also provides useful range information for target’s state
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estimation.
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Figure 4.5: Example 1: Trajectories of the trackers, target and target’s estimates.

0 50 100 150 200 250 300 350 400

t(s)

0

20

40

60

80

||
q
−

q̂
||
[m

]

Position estimation error

EKF

KF-LTV

0 50 100 150 200 250 300 350 400

t(s)

0

2

4

6

||
v
−

v̂
||
[m

/s
]

Velocity estimation error

EKF

KF-LTV

Figure 4.6: Example 1: Estimation errors of target’s position (upper) and velocity (lower).
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4.7.2 Example 2 - single beacon navigation

In this section, we present simulation results for the single beacon navigation problem.

The simulation setup is given in Table 4.2. Note that the vehicle’s velocity in the ta-

ble satisfies observability condition in Theorem 4.9. Thus, the vehicle’s position and the

ocean current disturbance will be observable.

Table 4.2: Simulation setup for Example 2

Parameters

Beacon position s = [0, 0, -50] (m)

p(0) = [0, 0, 0] (m),

Vehicle u(t) = [10 cos(0.2t), -10 sin(0.2t), 2 sin(t)− 0.3] m/s

Ocean current vc = [0.2, 0.3,−0.1] m/s

Q = 1e-4diag(1, 1, 1, 0.1, 0.1, 0.1)

EKF R = 1

Q = 1e-10diag(1e3, 1e2, 1e-1, 1e-2, 1e-2, 100, 1e-3, 1e-3, 100])

KF-LTV R = 100

We assume that the measurements of the vehicle’s velocity and ranges from the vehicle to

the beacon are disturbed by Gaussian noises with zero mean and covariances of 1e−−4I3

(m/s) for u and standard deviations of 0.5(m) for r. The range is taken periodically, at

every 0.1 second. We used two filters to estimate the vehicle’s position and the ocean

current. The first is an EKF based on the nonlinear model (4.63) whereas, the second is a

KF based on the LTV model (4.77). The two filters were initialized with p̂ = [10, -15, 5]T

and v̂c = [0.1, -0.1, 0.1]T.

The simulation results are plotted in Fig.4.7 and Fig.4.8. The figures show that the posi-

tion and ocean current estimation errors converge to a neighbor of zero, with both filters.

This implies that the trajectory of the vehicle is sufficiently exciting for navigation of the

vehicle its self and for estimating the ocean current disturbance. Although theoretically,

the KF-LTV can guarantee a global convergence of the estimation errors, however we

found that it was easier to tune with the EKF. This can be come from the fact that the

EKF runs on model (4.63) which does not require to estimate extra coupling variables

(i.e. ‖r0‖2, rT
0 vc and ‖v‖2

c) as in the KF which builds on the LTV model (4.77)
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4.8 Conclusions

We proposed a systematic approach to study the observability problem of range-based

navigation and target localization of a moving target using one or two trackers. The

approach, which uses simple tools to characterize the linear independence of a set of

functions was shown to be very efficient to derive conditions on the motion of tracker(s)

to ensure global observability of the target state. This is in striking contrast to previous

approaches reported in the literature that are more complex in nature. We also gave

geometric interpretations of the conditions derived that can be used as guidelines to plan

the motions of the trackers. We also show how the proposed method can be extended to

the range-based single beacon navigation problem in an analogous manner.

Future work aims to address a challenging question: what type of trajectories that not

only ensure global observability of the target but also provide “rich” information for

target’s state estimation purpose, that is, how characterize trajectories that render the

target “strongly observable”. Recall that the conditions for observability of the LTI

systems obtained in this chapter are also for observability of the target. In the context

of LTV systems, degree of observability of a LTV system can be quantified by several

measures such as the determinant or condition number of its associated Gramian matrix

[Singh and Hahn, 2004]. A higher value of the determinant implies an increased degree

of observability whereas, a larger value of the condition number implies an decreased

degree of observability. Therefore, a promising research direction to address the above

question is to investigate the Gramian matrix of the LTV systems obtained in this chapter,

with the main objective of characterizing trajectories that render the LTV system highly

observable.

In next chapter we proposed an alternative (quantitative) approach to the range-based

target problem, adopting another tool from estimation theory called Fisher Information

Matrix.
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5.1 Literature review

In this chapter, we address the general problem of multiple target localization and

pursuit using measurements of the ranges from the targets to a set of autonomous pur-

suing vehicles, referred to as trackers, the positions of which are all known at all times.

We develop a general framework for targets with models exhibiting uncertainty in the

initial state, process, and measurement noise. The main objective is to compute optimal

motions for the trackers that maximize the range-based information available for target

localization and at the same time yield good target pursuit performance. The solution

proposed is rooted in an estimation-theoretical setting that involves the computation of an

appropriately defined Bayesian Fisher Information Matrix (FIM). The inverse of the lat-

ter yields a posterior Cramér-Rao Lower Bound (CRLB) on the covariance of the targets’

state estimation errors that can be possibly achieved with any estimator. Using the FIM,

sufficient conditions on the trackers’ motions are derived for the ideal relative geometry

between the trackers and the targets for which the range information acquired is maximal.

This allows for an intuitive understanding of the types of ideal tracker trajectories.

To deal with realistic constraints on the trackers’ motions and the requirement that the

trackers pursue the targets, we then propose a model predictive control (MPC) frame-

work for optimal tracker motion generation with a view to maximizing the predicted range

information for target localization while taking explicitly into account the trackers’ dy-

namics, strict constraints on the trackers’ states and inputs, and prior knowledge about

the targets’ states. The efficacy of the MPC is assessed in simulation through the help of

representative examples motivated by operational scenarios involving single and multiple

targets and trackers.

5.1 Literature review

The problem of target localization and pursuit has received widespread attention due to

its importance in a vast number of applications in the areas of marine science, surveil-

lance and reconnaissance, search-and-rescue, and military operations, see [Clark et al.,

2013, Zolich et al., 2017, Philippe Lacomme, 2001, Ristic et al., 2004]. In the literature,

localization usually refers to the problem of finding the location of an unknown stationary

target, while tracking refers to the task of estimating the trajectory of a moving target.

In this chapter, localization includes both tasks. Pursuit, in what follows, has the more

control-oriented meaning of ensuring that in the course of their motion the entities in

charge of estimating the trajectories of the targets stay in pre-defined neighborhoods of

the targets. In this context, target pursuit is a secondary task that aims to enhance the
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“visibility” of the targets so as to yield better quality of the information available for tar-

get localization. In this chapter, this information consists of measurements of the ranges

between the trackers and the targets.

The simplest and most classical problem of range-based target localization involves com-

puting the position of a single fixed target using a network of fixed sensors equipped

with range-measuring devices. A fundamental problem arising in this context is that of

deciding on the number of sensors and how to best place them so that the position of the

target can be uniquely estimated with a desired level of accuracy (optimal sensor place-

ment). A solution to this problem can be obtained by adopting an estimation theoretical

framework that involves the computation of an appropriately defined Fisher information

matrix (FIM). See for example [Martinez and Bullo, 2006, Bishop et al., 2010, Moreno-

Salinas et al., 2013] for a discussion of these issues. See also [Moreno-Salinas et al., 2016]

for optimal sensor placement solutions in the case of multiple static targets and sensors.

In recent years, there has been growing interest in exploiting the use of single or multi-

ple mobile sensors (called trackers) for target localization, focusing on applications with

unmanned aerial vehicles (UAVs) and autonomous marine vehicles (AMVs), see for ex-

ample [Masmitja et al., 2018, Masmitja et al., 2017, Mandić et al., 2016, Clark et al.,

2013, Indiveri et al., 2012, Crasta et al., 2018] and the references therein. In this setup,

the trackers carry range measuring devices to acquire successive ranges to the targets of

interest and use the range information to estimate the state of each target. Obviously,

this approach has many advantages when compared with the traditional method of using

a fixed sensor network. First, thanks to the mobility of the trackers, ranges can be ac-

quired from a large number of positions relative to each target, thus potentially providing

more information for target localization [Masmitja et al., 2018]. Second, the visibility of

the targets can be facilitated by controlling the trackers to be in a given neighborhood of

them. Lastly, the use of trackers in the form of AMVs avoids the cumbersome and costly

deployment of long baseline (LBL) systems that are classically used in underwater target

localization.

This, however leads to the challenging problem of how to plan the motion of the trackers

such that their maneuvers ensure that the measured ranges from the trackers to the tar-

gets yield, in a well defined mathematical sense, the information needed to estimate the

position of the target with a given level of accuracy through the use of an appropriately

designed estimator. Technically, the answer to this problem should provide conditions on

the motions of trackers that yield target motion observability, given measurements of the

ranges between trackers and targets. A classical approach to this problem reported in
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the literature is to utilize tools from observability analysis, see for example [Pillon et al.,

2016, Jauffret et al., 2017,Arrichiello et al., 2013, Indiveri et al., 2012,Hung and Pascoal,

2020b] and references therein. For instance, in [Pillon et al., 2016], the author shows that

it is impossible to observe a target moving at a constant velocity vector if the tracker

(observer) moves at a constant velocity as well. However, if the tracker’s trajectory is

composed of at least two straight line segments with different orientations, the target’s

motion is observable if certain conditions on the bearing between the tracker and the

target are satisfied. This analysis is further investigated in [Jauffret et al., 2017] where

the trajectory of the tracker is considered to be smooth. In [Arrichiello et al., 2013], the

author analyzes the relative motion between the target and tracker using observability

rank condition given in the work of [Hermann and Krener, 1977]. Recent work in [Hung

and Pascoal, 2020b] provides a set of necessary and sufficient conditions on the motions

of one or two trackers under which different type’s of target’s motions are observable. In

general, the above approaches provide conditions on the tracker’s trajectories that yield

target state observability. However, these are essentially qualitative result that do not

provide a good measure of how observable the target motions, a key requisite for adequate

tracker motion planning.

A quantitative approach to motion planning can be derived using the celebrated Fisher

Information Matrix (FIM), as a means to quantify the amount of information that range

measurements carry about the motions of a target. Using this approach, the target local-

ization problem is converted into that of finding conditions on the trackers’ trajectories

that maximize range-related information available to estimate the target’s state. We re-

call that in an estimation theoretical framework, the inverse of the FIM yields a lower

bound (the celebrated Cramér-Rao lower bound, abbreviated CRLB) on the covariance

of the target’s state estimation error that can possibly be achieved with any practical

estimator [Tichavsky et al., 1998, Van Trees, 2004, Ristic et al., 2004]. In the context of

range-based target localization, the CRLB is mostly used to access the performance that

can be achieved with target state estimators [Ristic et al., 2002, Ristic et al., 2004]. A

number of studies that exploit the use of the FIM for tracker motion planning have been

published in the literature, see [Masmitja et al., 2018,Masmitja et al., 2019,Crasta et al.,

2018] and the reference therein for the case of one tracker one target. More recently,

similar tools have been used to tackle the tracker motion planning problem in the case of

multiple tracker-multiple target configurations [Crasta et al., 2018]. Notice, however that

in [Crasta et al., 2018,Masmitja et al., 2019] the authors resort to the use of the so-called

parametric FIM. In this context, the targets evolve in a deterministic manner and the
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initial conditions of the targets are viewed as parameters to be estimated. As such, the

work eschews the far more realistic case where the initial state of the targets (prior infor-

mation) is described by a random variable that captures the uncertainty in their location,

a fact that mandates the use of so-called Bayesian FIM and the computation of poste-

rior CRLBs [Tichavsky et al., 1998], explained later in this chapter. Most approaches

to tracker localization, including those reported in [Crasta et al., 2018, Masmitja et al.,

2019], also fail to address explicitly the constraints introduced by the limitations in the

maneuverability of the trackers. In addition, the guidance law proposed in [Crasta et al.,

2018,Masmitja et al., 2019] for the trackers is based on the assumption that the motions

of the targets are known in advance, which is unrealistic in the context of target localiza-

tion. Still, the results in [Crasta et al., 2018] are valuable in terms of understanding at

an intuitive level, what kinds of optimal tracker trajectories are suited to selected types

of target motion patterns.

Motivated by the above considerations, in this chapter we provide an answer to the ques-

tion of “how to plan optimal motions” for a set of trackers so as to maximize the range

information available to localize and pursue multiple unknown targets by exploiting the

properties of an appropriately defined Bayesian FIM. Specifically, the main contributions

of this chapter include the following:

(i) We construct a Bayesian FIM using the range measurements from multiple trackers

to multiple targets as a means to quantify the range information for the estimation

of targets’ states. The formalism adopted allows for the study of problems far

more appropriate and realistic than those addressed in [Crasta et al., 2018]. First,

we consider a more general scenario (later denoted Scenario B) where the velocity

vectors of the targets are considered to be unknown and must be estimated. Second,

the motion of targets are considered to be a dynamical system with given prior

information, allowing us to incorporate explicitly the prior knowledge of the targets’

states. Third, the FIM in this chapter is the Bayesian FIM [Tichavsky et al.,

1998] which is more suitable and appropriate for the problem considered than the

parametric FIM studied in [Crasta et al., 2018]. The Bayesian FIM takes into

account the dynamics of the trackers and the targets systematically and is computed

sequentially, making its computation is simpler, clean and more transparent then

the method adopted in [Crasta et al., 2018]. Forth, the depths of the trackers and

targets are explicitly taken into account. Lastly, we derive sufficient conditions on

the relative geometry between the trackers and the targets trajectory under which

the range information computed by the determinant of the FIM is maximum.
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(ii) We also propose an MPC-based tracker motion planning, control, and estimation

strategy that takes into account the trackers’ constraints explicitly, in order to plan

optimal motions for the trackers to localize and pursue the targets. In the MPC

framework adopted, the control and planing processes are based on the estimated

information about the target, thus making the approach more realistic than the

guidance law given in [Crasta et al., 2018] where the targets’ motions are assumed

to be known in advance.

5.2 Notation

We denote by In the identity matrix of size n and by 0m×n the zero matrix of size m× n.

For two matrices A,B ∈ Rn×n the notation A � B implies that A−B is a positive semi-

definite matrix. We further let det(·) and Tr(·) denote the determinant and the trace of

a square matrix, respectively. The symbol ‖·‖ denotes the Euclidean norm of a vector in

Rn. Given x ∈ Rn and a symmetric positive-definite matrix D ∈ Rn×n, ‖x‖2
D , xTDx.

Given a set of matrices W1, ...,Wp ∈ Rn×m, the symbol Diag(W1, ...,Wp) means the block

diagonal matrix whose diagonal blocks are the matrices Wk; k ∈ {1, .., p}. Given a set of

vectors x1, ...,xp, col(xi) = [xT
1 , ...,x

T
p ]T.

5.3 Problem formulation

5.3.1 System model

Consider a group of trackers charged with the task of localizing and pursuing a group of

moving targets whose motions are partially unknown. As an example, Fig.5.1 illustrates

the situation where two autonomous surface vehicles (ASVs) localize and pursue three

autonomous underwater vehicles (AUVs) using acoustic range measurements. In general,

given p, q ∈ N, we define i ∈ S , {1, ..., p} and ST , {1, ..., q}, where p and q denote the

number of trackers and targets, respectively. In what follows, {I} = {xI , yI , zI} denotes

an inertial coordinate frame and {B}[i] = {x[i]
B , y

[i]
B , z

[i]
B } denotes a body coordinate frame

attached to tracker i; i ∈ i ∈ S. We now discuss the tracker and target models considered

in this chapter.

Tracker dynamics: For each i ∈ i ∈ S, let z[i] be the zI coordinate of tracker i in frame

{I}. For the sake of simplicity, when analyzing the geometry of the motion of trackers,
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ASV  1
ASV  2

AUV  1 AUV  2

AUV  3

Figure 5.1: An example of two trackers (ASVs) localizing three targets (AUVs) using acoustic
range measurements.

we assume that all trackers operate at known constant but possibly different depths, that

is, z[i](t) = z̄[i] for all t ≥ 0 and i ∈ S. With the above assumptions, the planar motion of

tracker i; i ∈ i ∈ S, can be described by the simplified kinematic model

ṗ[i] = v[i][cos(χ[i]), sin(χ[i])]T, χ̇[i] = r[i], (5.1)

where p[i] = [x[i], y[i]]T ∈ R2 is the horizontal position of tracker i in {I}; v[i] =
∥∥v[i]

∥∥
is its total linear speed; χ[i] is the course angle (see Fig.5.2), and r[i] is the course angle

rate. Notice that if the sideslip angle of the tracker is sufficiently small to be ignored,

than course angle and course angle rate are equivalent to heading angle and yaw rate,

respectively. Our main objective is to find smooth linear speed and course rate references

for an autopilot to drive the trackers along trajectories that yield rich range-information

for target localization. We introduce the constraints

v̇[i] = a[i]
v , ṙ[i] = a[i]

r , (5.2)

where a
[i]
v and a

[i]
r denote the linear and angular acceleration of the tracker, respectively,

which we assume are bounded. In state-space form, we let z[i] = [x[i], y[i], ψ[i], v[i], r[i]]T ∈
R5 be the state vector and v[i] = [a

[i]
v , a

[i]
r ]T ∈ R2 the input vector. The tracker’s model

(5.1) can now be rewritten as {
ż[i] = g(z[i],v[i]),

p[i] = Cz[i]
(5.3)
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where g : R5 × R2 → R5 and C ∈ R2×5 are given by

g(z[i],v[i]) =


v[i] cos(χ[i])
v[i] sin(χ[i])

r[i]

a
[i]
v

a
[i]
r

 and C =
[
I2 02×3

]
.

respectively. Later, for the purpose of system design, (5.3) will be discretized in time,

yielding {
z

[i]
k+1 = gd(z

[i]
k ,v

[i]
k ),

p
[i]
k = Cz

[i]
k ,

(5.4)

where k ∈ N indexes discrete time instants and gd(·) is a nonlinear function that depends

on the chosen discretization procedure. Due to physical limitations, the linear and the

rotational speeds and the accelerations of the trackers are bounded. For this reason, we

will impose the state and input constraints

Figure 5.2: Illustration of the planar motion of vehicle i .

v[i] ∈ V [i], z[i] ∈ Z [i], (5.5)

where V [i] ⊆ R2 and Z [i] ⊆ R5 are input and state constraint sets, respectively, for trackers

i; i ∈ i ∈ S.

Target model: Let z
[α]
T be the zI coordinate of target α in {I}. We assume that all targets

move at known and constant depths, that is, z
[α]
T (t) = z̄

[α]
T for all t ≥ 0 and α ∈ ST. Let

also q
[α]
k = [x

[α]
T,k, y

[α]
T,k]

T ∈ R2 be the projection of the target position vector at discrete

time k on the horizontal plane xI − yI . We consider each target α as a point mass whose
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motion is described by the discrete model

x
[α]
k+1 = f(x

[α]
k ,u

[α]
k ), (5.6)

where x
[α]
k ∈ Rn, (n ≥ 2) is the target’s state vector that needs to be estimated, u

[α]
k ∈ R2

is the input vector. Note that x
[α]
k includes q

[α]
k and possibly q̇

[α]
k . In this chapter, we

consider two instances of (5.6) corresponding to the following practical scenarios.

Scenario A: Target velocity vectors are known

To justify the assumption, consider a fleet of targets (AUVs) performing a pre-defined

mission underwater, for example, cooperative path following [Rego et al., 2019a], with

known pre-defined velocity vectors. Under this assumption, we adopt the following target

model:

Target model A:

x
[α]
k+1 = x

[α]
k + Tsu

[α]
k , (5.7)

where x
[α]
k = q

[α]
k ∈ R2; u

[α]
k ∈ R2, α ∈ ST, is the target velocity vector in the inertial

frame that is known to all the trackers, and Ts is the sampling interval. Consequently,

in this particular case only the positions of the targets need to be estimated. We also

assume that prior information on the initial target’s state vector x
[α]
0 is given in terms of

a Gaussian probability density function (PDF) described as

x
[α]
0 ∼ N (c

[α]
A,0, P

[α]
A,0) (5.8)

for some c
[α]
A,0 ∈ R2 and P

[α]
A,0 ∈ R2×2;α ∈ ST.

Scenario B: Targets’ velocity vectors are unknown

In this case, the trackers need to estimate both the position and velocity vectors of each

target. We also consider the case where the target’s velocity vector changes slowly, so

that it can be assumed to be approximately constant over the observation window, i.e.

q̇
[α]
k = 0 for all α ∈ ST. We thus let x

[α]
k = [q

[α]
k ; q̇

[α]
k ] ∈ R4 be the state vector of the target

α; α ∈ ST, that must be estimated. The following model for each target, named Target

model B , can be rewritten explicitly from (5.6) as follows:

Target model B:

x
[α]
k+1 = ABx

[α]
k , (5.9)

where

AB =

[
I2 TsI2

02×2 I2

]
∈ R4×4. (5.10)

144



5.3 Problem formulation

Assume further that prior information on the initial target’s state x
[α]
0 is given by the

Gaussian PDF

x
[α]
0 ∼ N (c

[α]
B,0, P

[α]
B,0) (5.11)

for some c
[α]
B,0 ∈ R4 and P

[α]
B,0 ∈ R4×4;α ∈ ST.

Measurement model: We assume that each tracker is equipped an acoustic-based system

that measures the distances to all targets at approximately the same discrete instants of

time. At each time k, let d
[i,α]
k be the true distance from tracker i; i ∈ i ∈ S, to target

α;α ∈ ST, defined as

d
[i,α]
k =

√∥∥∥p[i,α]
k

∥∥∥2

+
(
z̄[i] − z̄[α]

T

)2

, (5.12)

where

p
[i,α]
k , p

[i]
k − q

[α]
k . (5.13)

Further, let y
[i,α]
k denote the range measurements which we assume are corrupted by

Gaussian white noise according to the range measurement model

y
[i,α]
k = d

[i,α]
k + η

[i,α]
k , (5.14)

where η
[i,α]
k ∼ N (0, σ2), i ∈ i ∈ S and α ∈ ST. In practice, range measurements can only

be obtained up to a certain distance that depends on the type of range-measuring device

used and the environmental conditions (see [Moreno-Salinas et al., 2016]). Therefore, we

make the following assumption.

Assumption 3. We assume that the farthest distance that can be measured reliably by

any range-measuring devices is dmax > 0. We further assume that all range measurements

are taken within this distance, i.e. d
[i,α]
k ≤ dmax for all k ∈ N, i ∈ i ∈ S and α ∈ ST.

These constraints will be addressed explicitly in Section 5.6.

5.3.2 Problem statement

The multiple target localization and pursuit problem can now be formally defined as

follows.

Problem 5.1 (Target localization and pursuit). Consider a set of multiple trackers and

a set of multiple targets. Assume that the trackers’ dynamics are given by (5.1) subject
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to input and state constraints (5.5), and the targets’ model is given by (5.6) where the

targets’ states x
[α]
k ;α ∈ ST are unknown. Further assume that the range measurement

model is given by (5.14). Under these conditions, design inputs v[i]; i ∈ i ∈ S for each

tracker so that the following tasks are fulfilled

• Localization task: Ensure that the range measurements provide “sufficiently rich

range information” to estimate the targets’ states, in a well defined mathematical

sense.

• Target pursuit: In addition to the localization task, guarantee that the trackers are

in a desired vicinity of the targets, that is, ensure that the distance from any tracker

to any target does not exceed r∗ ≤ dmax, where r∗ is a design parameter.

A natural question that arises in this context is how to quantify the range information

required to estimate the states of the targets with a desired level of accuracy. With this

objective in mind we adopt an estimation theoretical setting that involves the computation

of the FIM, whose definition and construction in the context of target localization are

presented in the next section.

Remark 5.1. Notice that in the target localization and pursuit problem, target localization

is the primary task while target pursuit is secondary. The objective of the latter is to keep

the trackers close to the targets so as to be able to acquire useful range measurements.

5.4 The Bayesian FIM in the context of range-based

target localization

5.4.1 The Bayesian FIM for a general target model

We start by recalling the concept and construction of the Bayesian FIM that arises in

the context of estimation of dynamical systems [Tichavsky et al., 1998]. Consider the

problem of estimating the state of a discrete nonlinear system described by

xk+1 = f(xk,uk) + wk

yk = h(xk,φk) + ηk,
(5.15)
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where xk ∈ Rn is the state, uk ∈ Rm is a known deterministic input, yk ∈ Rl is the

measurement output at discrete time k, φk is a known deterministic trajectory (to be

defined later) while wk ∼ N (0, Q) and ηk ∼ N (0, R) are independent Gaussian random

processes that describe the state and measurement noises, respectively. In the context of

range-based target localization, h(·) are the distances from the trackers to the targets and

φk are the positions of the trackers (see (5.12)). Let x̂k be an estimate of xk based on

a set of k measurements samples {yi,φi,ui−1}ki=1 and the prior knowledge of the initial

probability density function p(x0). According to [Van Trees, 2004], the covariance matrix

of x̂k, denoted Pk, given by any estimator is lower bounded as

Pk = E{(x̂k − xk)(x̂k − xk)
T} � I−1

k , (5.16)

where Ik is the so-called Fisher information matrix associated with the estimation of the

state xk and its inverse is the posterior Cramér-Rao Lower Bound (CRLB). Applying

the methodology described in [Tichavsky et al., 1998], the Bayesian FIM is given by the

recursive formula

Ik+1 = D22
k −D21

k (Ik +D11
k )−1D12

k , (5.17)

where

D11
k = E{

[
∇xkf

T(xk,uk)
]
Q−1

[
∇xkf

T(xk,uk)
]T}, (5.18)

D12
k = −E{∇xkf(xk,uk)}Q−1 = [D21

k ]T, (5.19)

D22
k = Q−1 + Ωk+1, (5.20)

with

Ωk+1 = E{Hk+1(xk+1,φk+1)} (5.21)

and

Hk+1(xk+1,φk+1)

=
[
∇xk+1

hT(xk+1,φk+1)
]
R−1

[
∇xk+1

hT(xk+1,φk+1)
]T
.

(5.22)

In the above equations, E denotes the expectation operator and, for a given x = [x1, ..., xn]T ∈
Rn, ∇x , [ ∂

∂x1
, ..., ∂

∂xn
]T. Note that the expectation in (5.18) and (5.19) is with respect

to the distribution of xk while in (5.21) it is computed with respect to the distribution of

xk+1. The recursion in (5.17) is initialized with the prior information of the initial state
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x0 as

I0 = E{[∇x0 log p(x0)][∇x0 log p(x0)]T}. (5.23)

We now consider a special case of (5.15) where the state equation is linear, given by

xk+1 = Axk +Buk + wk

yk = h(xk,φk) + ηk.
(5.24)

With this model, it follows from (5.18) and (5.19) that D11
k = ATQ−1A and D12

k = ATQ−1.

Inserting the latter in (5.17) yields

Ik+1 =Q−1 + Ωk+1

−Q−1A(Ik + ATQ−1A)−1ATQ−1.
(5.25)

Applying the matrix inversion lemma1, (5.25) can be simplified as

Ik+1 = (Q+ AI−1
k AT)−1 + Ωk+1. (5.26)

If A is non-singular and the process noise is absent, that is, if Q = 0 in (5.26), then

Ik+1 = [A−1]TIkA−1 + Ωk+1. (5.27)

Since h(·) is a nonlinear function, in general it may be impossible to compute Ωk+1 given

by (5.21) analytically. In practice, a Monte Carlo simulation method can be used to

approximate the expectation operator. The key idea behind the Monte Carlo method

is that, given x
(j)
0 ∼ p(x0); j = 1, ...,M and a sequence of {ui,φi+1}ki=0, we carry out

M simulations of the system (5.24) to obtain M realizations of the trajectory {x(j)
i+1}ki=0.

Then, the expectation in (5.21) can be computed approximately as

Ωk+1 ≈
1

M

M∑
j=1

Hk+1(x
(j)
k+1,φk+1). (5.28)

5.4.2 The Bayesian FIM for Target Model A

For each i ∈ S, let I [i,α]
A,k ∈ R2×2 be the Bayesian FIM at time k, associated with the

estimation of the state x
[α]
k of target α with motion described by Target model A, using

1(A+BCD)−1 = A−1 −A−1B(DA−1B + C−1)−1DA−1
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the range measurements from tracker i. Notice that the system that results from the

combination of Target model A described by (5.7) and the output model given by (5.12)

is a special case of (5.24) with A = I2, B = TsI2, R = σ, φk = p
[i]
k , Q = 0 and h(·) = d

[i,α]
k ,

where d
[i,α]
k is given by (5.12). Substituting the above parameters in (5.27), I [i,α]

A,k is given

by

I [i,α]
A,k+1 = I [i,α]

A,k + Ω
[i,α]
k+1 (5.29)

where Ω
[i,α]
k+1 is computed as in (5.21), yielding

Ω
[i,α]
k+1 = E

{
1

σ2

(
p

[i,α]
k+1

d
[i,α]
k+1

)(
p

[i,α]
k+1

d
[i,α]
k+1

)T}
(5.30)

with p
[i,α]
k as in (5.13). Note that the expectation in (5.30) is taken over the distri-

bution of q
[α]
k+1. We now consider I [α]

A,k, the FIM for estimating x
[α]
k , using the range

measurements from all trackers, collectively. Compared with the case of a single tracker,

more range measurements are augmented to the measurement output vector, i.e. h(·) =

[d
[1,α]
k , ..., d

[p,α]
k ]T ∈ Rp and R = Diag(σ, ..., σ) ∈ Rp×p. Inserting the above in (5.27) yields

I [α]
A,k+1 = I [α]

A,k +

p∑
i=1

Ω
[i,α]
k+1. (5.31)

It follows from (5.8) and (5.23) that the recursions (5.29) and (5.31) start with the prior

information

I [i,α]
A,0 = I [α]

A,0 = [P
[α]
A,0]−1, (5.32)

that is, the FIM iterations start with the prior information on the target’s positions.

Let xk = [x
[1]
k , ...,x

[q]
k ] ∈ R2q be the states of all targets that need to be estimated.

Also, let IA,k ∈ R2q×2q denote the total information available to estimate xk using all

range measurements from all the trackers to each of the targets. Using the methodology

mentioned in the previous cases, it can be shown that

IA,k = Diag(I [1]
A,k, ..., I

[q]
A,k), (5.33)

where each I [α]
A,k;α = 1, ..., q is computed using (5.31).
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5.4.3 The Bayesian FIM for Target Model B

For every i ∈ S, let I [i,α]
B,k ∈ R4×4 be the FIM associated with the estimation of the

state x
[α]
k ∈ R4 of target α, with motion described by Target model B, using the range

measurements from tracker i. Notice that Target model B given by (5.9) is a special

case of (5.24) with A = AB, where AB is given by (5.10), R = σ, φk = p
[i]
k , Q = 0 and

h(·) = d
[i,α]
k . Substituting the above parameters in (5.27), I [i,α]

B,k is given by

I [i,α]
B,k+1 = [A−1

B ]TI [i,α]
B,k A

−1
B +

[
Ω

[i,α]
k+1 02×2

02×2 02×2

]
. (5.34)

Let I [α]
k be the FIM associated with the estimation of x

[α]
k using the range measurements

from all trackers, collectively. Similar to the case of Target model A, I [α]
B,k can be computed

using the recursion formula

I [α]
B,k+1 = [A−1

B ]TI [α]
B,kA

−1
B +

p∑
i=1

[
Ω

[i,α]
k+1 02×2

02×2 02×2

]
. (5.35)

It follows from (5.11) and (5.23) that the recursions (5.34) and (5.35) start with the prior

information

I [i,α]
B,0 = I [α]

B,0 = [P
[α]
B,0]−1. (5.36)

Let xk = [x
[1]
k , ...,x

[q]
k ]T ∈ R4q be the state of all targets that needs to be estimated. Also,

let IB,k ∈ R4q×4q denote the total information for estimating xk. Clearly, IB,k is given by

IB,k = Diag(I [1]
B,k, ..., I

[q]
B,k), (5.37)

where each I [α]
B,k;α = 1, ..., q is computed by (5.35). Note that by construction, the FIM is

symmetric and positive semidefinite. In the context of the present chapter, the information

carried by the FIM for estimation purposes is measured by its determinant, the metric

adopted in [Moreno-Salinas et al., 2013,Bishop et al., 2010].
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5.5 Preliminary analysis: ideal geometries for maxi-

mum range-related information

In the previous section, a FIM was constructed as a means to quantify the range infor-

mation available to estimate the targets’ states. In this section, we will analyze a special

case of the Bayesian FIMs derived for Target Model A and B where there is no prior

information on the initial state of the target2. We will show that this special case leads

to simplified FIMs that allows us to derive analytically “ideal” condition on the track-

ers’ trajectories that yield maximum achievable range-information acquired to estimate

the targets’ states. The results in this section helps understand at a very intuitive level

the types of optimal relative tracker-target geometries that the trackers should reach and

maintain to maximize the range-related information. Furthermore, they play an impor-

tant role in benchmarking the types of solutions that will be obtained numerically using

the far more realistic approach to target localization and pursuit introduced in Section

5.6.

To analyze the Bayesian FIMs with the above assumptions, their formulas in recursions

(5.31) and (5.35) can be rewritten in compact form as follows. Firstly, let

a[i,α]
n =

(
x[i]
n − x

[α]
T,n

)
/d[i,α]

n (5.38a)

b[i,α]
n =

(
y[i]
n − y

[α]
T,n

)
/d[i,α]

n , (5.38b)

for all n ∈ {1, ..., k}. Define also two vectors ai,α = [a
[i,α]
1 , ..., a

[i,α]
k ]T ∈ Rk and bi,α =

[b
[i,α]
1 , ..., b

[i,α]
k ]T ∈ Rk.

Lemma 5.1. Consider the Bayesian FIMs related to the problem of estimating the state

of target α computed by recursions (5.31) and (5.35), corresponding to Target model A

and Target model B, respectively. If there is no prior information on the initial target

state, i.e. I [i,α]
A,0 in (5.32) and I [i,α]

B,0 in (5.36) are zero then,

I [α]
A,k =

p∑
i=1

1

σ2

‖ai,α‖2 aT
i,αbi,α

aT
i,αbi,α ‖bi,α‖2

 (5.39)

2Equivalent with I [i,α]
A,0 in (5.32), I [i,α]

B,0 in (5.36) are zero
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and

I [α]
B,k =

Aα Bα

Bα Cα

 , (5.40)

where Aα = I [α]
A,k with I [α]

A,k given by (5.39),

Bα = −
p∑
i=1

1

σ2

 ‖ai,α‖2
D1

aT
i,αD1bi,α

aT
i,αD1bi,α ‖bi,α‖2

D1

 ,
Cα =

p∑
i=1

1

σ2

 ‖ai,α‖2
D2

aT
i,αD2bi,α

aT
i,αD2bi,α ‖bi,α‖2

D2

 ,
(5.41)

D1 = Diag(τ1, ..., τk) ∈ Rk×k, D2 = Diag(τ 2
1 , ..., τ

2
k ) ∈ Rk×k and

τn = (k − n)Ts, n = {1, ..., k}.

Proof: For Target model A, (5.39) is obtained by substituting I [i,α]
A,0 = 0 and the relation

in (5.38) in (5.31), while for Target model B, (5.40) is obtained by substituting I [i,α]
B,0 = 0

and the relation in (5.38) in (5.35). Notice also that since the process noise is zero the

target moves in a deterministic manner; thus, the expectation in (5.30) was dropped to

obtain (5.39) and (5.40). �

Before we proceed we introduce the variables

c[i,α] =

(
(z̄[i] − z̄[α]

T )

dmax

)2

(5.42)

and γ[i,α], with the latter defined by

cos(γ[i,α]
n ) =

(
x[i]
n − x

[α]
T,n

)
/
∥∥p[i,α]

n

∥∥ (5.43)

for all n ∈ {1, ..., k}. By definition, γ
[i,α]
n is the angle between the projection on the

xI − yI plane of the relative position vector from tracker i to target α and the xI-axis

(see Fig.5.3). The main results in this section are presented next.
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5.5 Preliminary analysis: ideal geometries for maximum range-related information

Figure 5.3: Illustration of an ideal tracker-target geometry that maximizes the range informa-
tion. Successive positions and respective trajectories of target (blue) and tracker
(red). This is the case of one tracker - one target so for the simplicity the super-
script [i, α] in γ is dropped.

5.5.1 Single tracker - single target

We start by considering the simple case of a single tracker localizing a single target. In this

configuration, i = p = 1 and α = q = 1. Therefore, for simplicity of notation we drop the

superscripts (subscripts) i and α wherever they appear in this subsection. The following

result provides a measure of the range-related information available in this scenario.

Theorem 5.1. Consider the case of a single tracker localizing a single target. Let as-

sumptions in Lemma 5.1 hold. Then, the following statements hold true.

i. For Scenario A, the range information quantified by the determinant of IA,k is max-

imal when IA,k = I11A, where

I11A = (1− c)σ−2IoA, (5.44)

c is given by (5.42), and

IoA = kI2/2. (5.45)

ii. For Scenario B, the determinant of IB,k is maximal when IB,k = I11B, where

I11B = (1− c)σ−2IoB, (5.46)
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c is given by (5.42),

IoB =

 kI2/2 ∆1I2/2

∆1I2/2 ∆2I2/2

 , (5.47)

with ∆1 , −
∑k

n=1 τn, and ∆2 ,
∑k

n=1 τ
2
n.

The matrices I11A and I11B are called the optimal range information matrices for Scenarios

A and B, respectively.

Proof: See section 5.9.1.

Remark 5.2. For Target model A, if the tracker and the target are at the same depth,

that is, c = 0, then the optimal FIM in (5.44) recovers the result in [Crasta et al., 2018]

(see Lemma 2 in [Crasta et al., 2018] for the case one tracker-one target). This happens

because, for this particular case, we assumed that there is no prior information on the

initial state of the target and therefore the target can be viewed as a deterministic process

with unknown initial target’s state. Thus, under these assumptions the simplified Bayesian

FIM associated with the estimation of the target state at current time (xk) in this chapter

is equivalent to the parametric FIM associated with the estimation of the initial target’s

state (x0) in [Crasta et al., 2018]. However, it is important to stress that the parametric

FIM in [Crasta et al., 2018] is only applicable to deterministic targets, whereas as shown

in the previous section the Bayesian FIM in this chapter is applicable to all types of target

motion. Furthermore, the method used to compute the Bayesian FIM in the present

chapter is a recursive approach, which is simpler and more transparent than that used to

compute the parametric FIM in [Crasta et al., 2018].

We now study possible target-tracker geometries that maximize the range-related in-

formation. We obtain the following result.

Proposition 5.1. Consider the case of a single tracker localizing a single target. In order

to reach the maximal range information, as characterized in Theorem 5.1, an optimal

trajectory for the tracker is obtained by encircling the projection of the target on the

xI − yI plan such that any two successive range measurements are taken at positions that

satisfy

γn+1 − γn = ω , ±2π/N (5.48)
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for all n ∈ {1, ..., k}, where γn defined in (5.43) and some natural number N ;N ≥ 3.

Furthermore, if the tracker and the target are at different depths, in addition to (5.48) the

tracker encircles the target along a circumference of radius r ,
√
d2

max − (z̄ − z̄T)2.

Proof: See section 5.9.2.

In (5.48), the symbol ± indicate the direction of the tracker’s motion (“ + ” is counter-

clockwise and “ − ” is clockwise). Proposition 5.1 implies that if the target is fixed

(stationary), an ideal trajectory for the tracker is obtained by having the tracker follow a

circumference centered at the target with a constant linear speed and a constant course

rate, see Fig.5.3.

5.5.2 Multiple trackers - single target

We now consider the case when more than one tracker is used to localize a single moving

target and derive the following result.

Theorem 5.2. Consider the case of p trackers localizing a single target, say α. Let

assumptions in Lemma 5.1 hold. Then, the following statements hold true.

i. For Scenario A, the determinant of I [α]
A,k is maximal when I [α]

A,k = Ī [α]
A,k, where

Ī [α]
A,k =

(
p−

p∑
i=1

c[i,α]

)
σ−2IoA, (5.49)

c[i,α] is given by (5.42), and IoA is given by (5.45).

ii. For Scenario B, the determinant of I [α]
B,k is maximal when I [α]

B,k = Ī [α]
B,k, where

Ī [α]
B,k =

(
p−

p∑
i=1

c[i,α]

)
σ−2IoB, (5.50)

c[i,α] is given by (5.42), and IoB is given in (5.47).

Proof: See section 5.9.3.

We now discuss possible geometries that maximize the range information. To this end, we

shall study the angle β[i,j;α] formed by the two relative position vectors from the trackers

i and j to the target α in the xI − yI plane (see Fig.5.4). We obtain the following result.
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Figure 5.4: Angle formed by the relative vectors between trackers and target α in the xI − yI
plane.

Geometry for two trackers- single target (p=2, q=1)

Proposition 5.2. Consider the case of two trackers localizing a single target α. In order

to obtain maximal range information, as characterized in Theorem 5.2, an ideal trajectory

for the trackers is to maintain the relative position vectors from the two trackers to the

target orthogonal, that is,

β[1,2;α]
n = π/2 + lπ (5.51)

for all n ∈ {1, ..., k} and l ∈ N. Furthermore, if the trackers and the target are at

different depths, in addition to the orthogonality condition above the condition given by∥∥∥p[i]
n − q

[α]
n

∥∥∥ =

√
d2

max − (z̄[i] − z̄[α]
T )2 for all i ∈ {1, 2} and n ∈ {1, ..., k} applies.

Proof: See section 5.9.4.

Fig.5.5 illustrates possible trackers-target trajectories that maximize the range informa-

tion when the trackers and the targets are at the same depth.

Figure 5.5: Example of an ideal relative trackers-target geometry for the case of two trackers
that yields maximum achievable range information. Trackers’ trajectories: tracker
1 (red), and tracker 2 (green).

156



5.5 Preliminary analysis: ideal geometries for maximum range-related information

Geometry for p trackers - single target (p ≥ 3, q = 1)

Proposition 5.3. Consider the case of p trackers localizing a single target α. In order

to obtain maximal range information, as characterized in Theorem 5.2, an ideal trajectory

for the trackers is to keep them around the target in such a way that

β[i,j;α]
n = β[j,i;α]

n = 2π/p (5.52)

for all i, j ∈ {1, ..., p} and n ∈ {1, ..., k}. Furthermore, if the trackers and the tar-

get are at different depths, in addition to the condition in (5.52) the condition given by∥∥∥p[i]
n − q

[α]
n

∥∥∥ =

√
d2

max − (z̄[i] − z̄[α]
T )2 for all n ∈ {1, ..., k} and i ∈ {1, ..., p} applies.

Proof: See section 5.9.5.

Fig.5.6 illustrates, for the case of three trackers and one target, possible tracker-target

trajectories that yield the maximum range information when all trackers and the target

are at the same depth. In this case, the trackers move in such a way as to keep the target

at the in-center of the equilateral triangle formed by their positions, viewed as vertices of

the triangle.

Figure 5.6: Example of a relative trackers-target geometry that maximizes range informa-
tion. Trackers and target trajectories: tracker 1 (red), tracker 2 (green), tracker 3
(black), and target (blue).

5.5.3 Multiple trackers - multiple targets

We now consider the case of multiple trackers and multiple targets. We first characterize

the optimal range-related FIM, as follows.
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Theorem 5.3. Consider the situation of p trackers localizing q targets. Let assumptions

in Lemma 1 hold. Then, the following statements hold true.

i. For Scenario A, the determinant of IA,k is maximal when IA,k = ĪA,k, where

ĪA,k = Diag(Ī [1]
A,k, ..., Ī

[q]
A,k), (5.53)

Ī [α]
A,k;α = {1, ..., q} given by (5.49).

ii. For Scenario B, the determinant of IB,k is maximal when IB,k = ĪB,k, where

ĪB,k = Diag(Ī [1]
B,k, ..., Ī

[q]
B,k), (5.54)

Ī [α]
B,k;α = {1, ..., q} given by (5.50).

Proof: See section 5.9.6.

We now discuss the ideal geometry for the case of two trackers localizing multiple targets.

Proposition 5.4. Consider the case of two trackers localizing q targets. In order to

obtain maximal range information, as characterized in Theorem 5.3, the ideal trajecto-

ries for the trackers correspond to maintaining the relative position vectors from them

to each target orthogonal. Furthermore, if the trackers and the targets are at different

depths, in addition to the orthogonality condition the condition given by
∥∥∥p[i]

n − q
[α]
n

∥∥∥ =√
d2

max − (z̄[i] − z̄[α]
T )2 for all n ∈ {1, ..., k}, i ∈ {1, 2} and α ∈ {1, ..., q} applies.

Proof: The proof is similar to that of Proposition 5.2. �

Fig.5.7 illustrates a possible tracker-target trajectory that maximizes the range informa-

tion for the case of two trackers and two targets. It can be seen that, in order to obtain

maximal range information, the trackers move so that the circumscribed circumference

that is centered at the middle of a line joining the two trackers goes through the positions

the targets.

5.6 MPC framework for range-based SLAP

The previous section addressed the problem of multiple target localization using multiple

trackers by characterizing the types of possible target-tracker geometries that yield max-
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5.6 MPC framework for range-based SLAP

Figure 5.7: Illustration of ideal trackers-targets trajectories that maximizes the range infor-
mation. Targets trajectories (blue). Tracker 1 (red), tracker 2 (green).

imum range-based information. The results obtained characterize the ideal positions of

the trackers with respect to the foreseeen motion of the targets. The analysis provided

valuable insight into the types of ideal tracker trajectories required. However, further

work is required to bring these theoretical advances to bear on the development of ef-

fective target localization and pursuit systems. In fact, the analysis eschewed four key

issues that occur in real situations: i) The target’s motion can not be known completely in

advance, ii) The motions of the trackers may be severely restricted due to their dynamics

and state/input constraints, iii) the trackers should maneuver in the vicinity of the targets

in order to ensure that range measurements can be obtained using appropriate acoustic

sensors, and iv) the optimal target-tracker geometries must be defined with respect to the

estimated positions of the targets (obtained with a properly designed estimator), since

the real states of the latter are unknown.

To address the above challenges, we propose a scheme that involves the execution of three

different phases: optimal tracker motion planning based on prior information about the

MPC

Targets’ states
estimator

Trackers

Figure 5.8: Receding horizon strategy for target localizing and pursuit.
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targets, motion control of the trackers based on the planned motion, and range- based

target state estimation. To implement the first two, an MPC-like framework is adopted

whereby the motions of the trackers are planned by resorting to a receding horizon frame-

work. In this set-up, the cost criterion adopted includes in its structure a measure of the

FIM constructed in Section 5.4. The latter uses the prior knowledge of the targets to

predict the range-related information available for target localization over a short predic-

tion horizon, with the objective of maximizing it by proper choice of the inputs to the

trackers and, as a consequence, of the tracker trajectories. Only the first term in the

optimal sequence of tracker inputs is used to drive the trackers, after which the procedure

is repeated.

The MPC scheme is illustrated in Fig.5.8 and is described as follows. Let z
[i]
k be the

state of the tracker i; i ∈ S at discrete time k. Assume that at each time instant k the

estimates of the targets’ states, denoted x̂
[α]
k and their covariance matrices P̂

[α]
k : α ∈ ST

can be provided by an estimator (e.g. EKF). Given this initial information at time k,

the FIM based on N range measurements ahead taken at instants k+ 1, ..., k+N can be

predicted using (5.33) for Target model A and (5.37) for Target model B, where N is called

the prediction horizon. From (5.33) and (5.37), it can be seen that the predicted FIM

depends on the trackers’ inputs v[i]; i ∈ S and the initial information about the targets.

Therefore, the predicted FIM, denoted Ip is defined explicitly as

Ip(z
[i]
k , x̂

[α]
k , P̂

[α]
k , v̄[i]) ,

{
IA,N for Scenario A,

IB,N for Scenario B ,

Figure 5.9: Illustration of the predicted uncertainty of the target’s position for Target model
A. Recall that in this case the target’s state only contains the target’s position.
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where IA,N and IB,N are computed using (5.33) and (5.37), respectively while v̄[i] =

[[v̄
[i]
k ]T, ..., [v̄

[i]
N−1]T]T; i ∈ S, are the trackers’ inputs over the prediction horizon. It is

important to note that at every sampled time k, IA,N and IB,N are initialized with the

prior information P̂
[α]
k . Based on the discussion in the previous section, the primary

objective is to find an optimal input to maximize the range-based information that is

defined by the cost

JFIM = − ln det
(
Ip

(
z

[i]
k , x̂

[α]
k , P̂

[α]
k , v̄[i]

))
. (5.55)

where ln det(·) and not simply det(·) is adopted due to computational advantages [Boyd

et al., 2004]. Let P̄
[α]
n ;n = k + 1, ..., N be the covariance of the target’ state predicted

over the prediction horizon, computed by using the initial covariance P̂
[α]
k and the Target

models (A or B). Let λ̄
[α]
n be the length of the major axis of the ellipse representing the

predicted uncertainty region of target’s position. Note that λ̄
[α]
n is computed from P̄

[α]
n

(for Target model A, this is illustrated in Fig.5.9). For the purpose of ensuring that the

trackers pursue the targets and remain in the vicinity of the latter, as stated in task 2

(see sub-section 5.3.2), we propose the tracking cost

JTrack =

p∑
i=1

q∑
α=1

k+N∑
n=k+1

− log(r∗ − d̄[i,α]
n − λ̄[α]

n − σ), (5.56)

where d̄
[i,α]
n denotes the predicted distance from tracker i to the estimated position of

target α, which is computed using (5.12) over the prediction horizon and r∗ is the upper

bound for the distance from each tracker to each target.

Let ē[i] = [v̄[i], r̄[i]], where v̄[i] and r̄[i] are the computed linear and angular speeds of

the ith tracker, respectively over the prediction horizon. As a means to limit the above

values, collectively taken as a proxy for tracker energy consumption, we consider the

energy-related cost

JEnergy =

p∑
i=1

k+N−1∑
n=k

∥∥ē[i]
n

∥∥2

Ei
,

where Ei ∈ R2×2 is a diagonal matrix and Ei � 0 for all i ∈ S. Finally, to control the

smoothness of the linear speed v̄[i] and the angular speed r̄[i] that can be used as references

for autopilots on board the trackers, we define the cost

JInput =

p∑
i=1

k+N−1∑
n=k

∥∥v̄[i]
n

∥∥2

Ki
,
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where Ki � 0 for all i ∈ S.

With the above ingredients, the problem of computing the trackers’ inputs over a given

time-horizon with the purpose of yielding good target localization and pursuit can be cast

in the form of the following optimal control problem:

Definition 5.1. The optimal control problem, denoted OCP(z
[i]
k , x̂

[α]
k , P̂

[α]
k , v̄[i](·)), is stated

as follows:

min
v̄[i](·);i∈S

JFIM + ρ1JTrack + ρ2JInput + ρ3JEnergy, (5.57)

subject to

z̄
[i]
n+1 = gd(z̄[i]

n , v̄
[i]
n ), i ∈ S, (5.58a)

p̄[i]
n = Cz̄[i]

n , i ∈ S, (5.58b)

z̄
[i]
k = z

[i]
k , i ∈ S, (5.58c)

z̄[i]
n ∈ Z [i], v̄[i]

n ∈ V [i], i ∈ S, (5.58d)

x̄
[α]
n+1 = f(x̄[α]

n , ū
[α]
n ), α ∈ ST, (5.58e)

x̄
[α]
k = x̂

[α]
k α ∈ ST (5.58f)

d̄[i,α]
n =

∥∥p̄[i]
n − q̄[α]

n

∥∥, α ∈ ST, (5.58g)

for n ∈ {k, ..., k +N − 1}

where ρ1, ρ2, ρ3 ≥ 0 are weighting factors.

In the constraint equations (5.58), the variables with a bar denote predicted variables, to

distinguish them from the actual variables, which are without bars. Equations (5.58a)-

(5.58d) are associated with the trackers’ dynamics and the trackers’ state and input

constraints, while (5.58e)-(5.58f) are the constraints associated with the targets’ models.

Notice how the optimal solution for the trackers’ inputs depends on the initial conditions

(5.58c) and (5.58f), which are updated at very time k. This implies that the trajectory of

the trackers need to be re-planned due to the changes in the initial conditions and justifies

our approach of using a receding horizon scheme (MPC) to solve the target localization and

pursuit problem. In the MPC scheme, the optimal control problem OCP(·) is repeatedly

solved at every discrete sampling instant k. Let v̄[i]∗(·); i ∈ S be the optimal solution

of the optimal control problem. The MPC control law for each tracker’s input is then
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defined as

v[i](t) := v̄
[i]∗
k for t ∈ [k, k + 1) (5.59)

for all i ∈ S.

In summary, the proposed receding horizon planing, control and estimation for the target

localization and pursuit problem can be implemented using Algorithm 5.1.

Algorithm 5.1 Receding horizon planing, control and estimation strategy for target
localization and pursuit

1: Initialization (k = 0):

2: For target model A: x̂
[α]
0 = c

[α]
A,0, P̂

[α]
0 = P

[α]
A,0

3: For target model B: x̂
[α]
0 = c

[α]
B,0, P̂

[α]
0 = P

[α]
B,0

4: At every sampled time k, repeat the following procedure:
5: procedure Planing, Control and Estimation
6: Solve the OCP(·) defined by (5.57) and (5.58).
7: Collect all ranges from trackers to targets.
8: Run estimators (e.g. EKF) to update x̂

[α]
k , P̂

[α]
k ;α ∈ ST

9: return v[i] for all i ∈ S using the MPC law (5.59) and x̂
[α]
k , P̂

[α]
k for all α ∈ ST

5.7 Simulation examples

In this section, we present and discuss simulation results with the objective of illustrating

the performance of the proposed MPC framework for localization and pursuit of under-

water targets (AUVs) using surface trackers (ASVs). We consider two situations. In

the first situation, an ASV is used for single target localization and pursuit, while in

the second situation two ASVs are used for localization and pursuit of two targets. The

simulation parameters are given in Table 5.1. Ranges measurement are available every

Ts = 2s. Furthermore, the ASVs are required to pursue the AUVs and stay inside each of

the AUV’s vicinity, with r∗ = 100m. The length of the prediction window is set as N = 6.

To solve the optimal control problem in the MPC scheme, we use Casadi, an open source

optimization tool [Andersson, 2013]. To estimate the target states, an extended Kalman

filter (EKF) was employed. The design of the EKF is straightforward, thus we omit its

description.

To assess the performance of EKF for the localization task, we define the position esti-

163



5.7 Simulation examples

mation and velocity estimation errors as follows:

PosErr =

q∑
α=1

∥∥∥q[α]
k − q̂

[α]
k

∥∥∥,
VelErr =

q∑
α=1

∥∥∥u[α]
k − û

[α]
k

∥∥∥, (5.60)

where q̂[α] and û[α] are estimated position and velocity vectors of the targets obtained

Table 5.1: Simulation setup

Parameters

Depths z̄[1] = 0m; z̄[2] = 0m

Trackers Vel. constraints v[i] ∈ [0, 4]m/s, r[i] ∈ [-0.2, 0.2]rad/s

(ASVs) Acc. constraints a
[i]
v ∈ [-0.1, 0.1]m/s2, a

[i]
r ∈ [-0.01, 0.01]rad/s2

for i ∈ {1, 2}

Depth z̄
[1]
T = 5m; z̄

[2]
T = 8m

Targets Velocity vector u[α] =

0.2 + 0.1 cos(0.1x
[α]
T )

0.2 + 0.1 sin(0.1x
[α]
T )

m/s

(AUVs) for α = {1, 2}
Initial positions q

[1]
0 = [5, -5]T,q

[2]
0 = [0, 0]Tm

RMNa Standard deviation σ = 0.5m

aRange measurement noise

from the EKF. The simulation results are shown next.

5.7.1 Simulation 1: single tracker - single target (p=1,q=1)

In this case, we use one ASV to localize and pursue a single target, that is, p = q = 1 and

we take the values corresponding to i = α = 1 in Table 5.1. For the MPC scheme, the

weighting parameters are set as ρ1 = 0.01 and ρ2 = ρ3 = 0. The EKF is initialized with

the prior information of the target given by Table 5.2.

The performance of the MPC scheme for target localization and pursuit under with Sce-

narios A and B are plotted in Fig.5.10 and Fig.5.11, respectively. It can be clearly seen
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a) Trajectories projected in 2D: tracker (p), target (q), target estimates (q̂). Ellipses
represent the uncertainty region of the estimated target’s positions (computed from P̂k)
at k = 0, 10, ..., 400. The brick-red ellipse corresponds to k = 0.
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Figure 5.10: Single tracker-single target for the case where the target’s velocity vector is known
(Target model A).

from the figures that the proposed MPC scheme performs well in this simulation set-up.

That is, the ASV’s trajectories generate “sufficiently rich” range information to estimate
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a) Trajectories projected in 2D: tracker (p), target (q), target estimates (q̂). Ellipses
represent the uncertainty region of the estimated target’s positions (computed from P̂k)
at k = 0, 10, ..., 400. The brick-red ellipse corresponds to k = 0.
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b) Target’s position and velocity estimation errors
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Figure 5.11: Single tracker-single target for the case where the target’s velocity vector is un-
known (Target model B).

the target’s state. This can be verified by observing Fig.5.10 (a,b) and Fig.5.11 (a,b),

where it is evident that the target’s state estimation errors converge to a small neigh-
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Table 5.2: Prior information on the initial target’s sate
(Gaussian PDF)

Scenario Aa Scenario Bb

Mean c
[1]
A,0 = [-25, -20]T c

[1]
B,0 = [-25, -20, -0, 2, 0, 75]T

Cov. P
[1]
A,0 = Diag(200, 200) P

[1]
B,0 = Diag(200, 200, 0.5, 0.5)

aSee (5.8)
bSee (5.11)

borhood of zero quickly. Comparing Fig.5.10(a,b) with Fig.5.11(a,b) it can be seen that

in Scenario A, where the target’s velocity vector is known, the estimated target’s posi-

tion converges to the small neighborhood of target’s position faster with higher accuracy.

Fig.5.10(c) and Fig.5.11(c) show that the distances from the tracker to the target are kept

below r∗, implying that the pursuit task is also fulfilled.

Fig.5.10(a) and Fig.5.11(a) also show that, regardless of the target model A or B, the ASV

follows and encircles the target’s uncertainty regions, which are represented by ellipses

in the figures. These trajectories are similar to the ideal trajectories stated in Proposi-

tion 5.1 that maximize the range information. Recall that the analysis in Proposition

5.1 neglected the tracker’s constraints and dynamics and the target state is considered

to be deterministic. Nevertheless, the analysis provides an intuitive understanding of the

trajectories obtained in this simulation when the tracker’s constraints and dynamics, and

the uncertainty of the target are taken explicitly into account.

5.7.2 Simulation 2: multiple trackers - multiple targets (p=2,q=2)

In this simulation, two trackers (ASVs) are deployed to localize and track two targets.

For the MPC scheme, the weighting parameters are set as ρ1 = 0.01, ρ2 = 0, ρ3 = 1, and

Ei = Diag(0.001, 0.01) for i = {1, 2}. In this simulation, prior information about the

initial targets state is used to construct the predicted FIM.

The performance of the MPC scheme for target localization and pursuit under Scenarios

A and B are plotted in Fig.5.12 and Fig.5.13, respectively. It can be clearly seen in

Fig.5.12(a,b) and Fig.5.13(a,b) that the estimated targets’ states quickly converge to the

targets’ states in both scenarios. It is also interesting to observe from Fig.5.12(c) and

Fig.5.13(c) that the angles between the relative position vectors from the ASVs to each
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target converge to 90 degree, thus recovering the behavior predicted in Proposition 5.4

for trajectories that maximize range-information.

a) 3D-Trajectories: trackers (p[i]), targets (q[α]), target estimates (q̂[α]); i, α = 1, 2. Dark
and cyan ellipses describe the uncertainty region in the initial positions of target 1 and
2, respectively.

0 100 200 300 400

Time[s]

0

20

40

P
os
E
rr
(m

)

b) Target position estimation error

0 100 200 300 400

Time[s]

0

90

150

β[1,2;1]

β[1,2;2]

c) Angles between the relative vectors from the ASVs to each target (in degrees)

0 100 200 300 400

Time[s]

0

50

100

d) Distances d[i,α]; i, α = 1, 2 from the ASVs to the targets (in m). Dash-blue is r∗.

Figure 5.12: Two trackers and two targets for the case where the targets’ velocity vector is
known (Target model A).
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a) 3D-Trajectories: trackers (p[i]), targets (q[α]), target estimates (q̂[α]); i, α = 1, 2. Dark
and cyan ellipses describe the uncertainty region in the initial positions of target 1 and
2, respectively.

0 100 200 300 400

Time[s]

0

20

40

P
os
E
rr
(m

)

0

2

4

6

V
el
E
rr
(m

/s
)

PosErr

VelErr

b) Targets’ position and velocity estimation errors
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Figure 5.13: Two trackers and two targets for the case where the targets’ velocity vector is
unknown (Target model B).
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5.8 Conclusions

Fig.5.12(d) and Fig.5.13(d) show that the distances from the ASVs to the targets are

kept smaller than r∗ = 100m, thus implying that the pursuit task is fulfilled in both

scenarios. Finally, we point out that unlike the case where a single ASV is used, the tra-

jectories of the ASVs are far less demanding in terms of the types of maneuvers executed.

5.8 Conclusions

We proposed an optimization-based approach to the problem of multiple target localiza-

tion and pursuit using measurements of the ranges between the trackers and the targets.

The underlying idea of the proposed method is to find optimal trajectories for the track-

ers that maximize the range-related information embodied in an appropriately defined

Bayesian FIM associated with the problem of target state estimation. Analytically, we

showed that for the ideal case where the trackers’ motion constraints are neglected and

there is no prior information on the initial target’s state, there exists an ideal relative

geometry of the trackers and the targets for which the range information acquired is

maximal. This geometry lends itself to a simple intuitive interpretation. To deal with

practical constraints and to consider the fact that the targets’ states are random and only

estimated on-line, we proposed an MPC framework for optimal tracker motion generation

with a view to maximizing the predicted range information for target localization, while

taking explicitly into account the trackers’ motion constraints, the prior knowledge of the

targets’ states, and the requirement that the pursuing trackers remain in the vicinities of

the targets. By defining appropriate cost and constraints, the MPC scheme is also capable

of tackling more challenging cases such as: i) the trackers must avoid obstacles and ii)

collision avoidance between the trackers. Future work will aim at decentralizing the MPC

scheme, and implementing it in a distributed manner, making the proposed method more

scalable for the case where a larger numbers of trackers may be used.

170



5.9 Proofs

5.9 Proofs

The following lemmas will be used in the proof:

Lemma 5.2. Let U, V ∈ Rn×n and U, V � 0. Then, det(U) + det(V ) ≤ det(U + V ).

The lemma is implied by Minkowski’s determinant inequality (see [Horn and Johnson,

2012], p. 510).

Lemma 5.3. If the trackers and the targets operate at the same depth, that is, z̄[i] = z̄
[α]
T

for all i ∈ S, α ∈ ST, then a
[i,α]
n = cos(γ

[i,α]
n ) and b

[i,α]
n = sin(γ

[i,α]
n ) for all i ∈ S, α ∈ ST

and n ∈ {1, ..., k}.

The lemma follows directly from (5.12), (5.38) and (5.43).

5.9.1 Proof of Theorem 5.1

i) We first prove the result for Scenario A. In this case, i = p = 1 and α = q = 1, thus

(5.39) can be rewritten as

IA,k =
1

σ2

[
‖a‖2 aTb

aTb ‖b‖2

]
. (5.61)

Recall that in this simple case we dropped the superscript (subscript) α in (5.39) for

simplicity in notation. We define zn = (z̄ − z̄T)2/d2
n for all n ∈ {1, ..., k}. It follows from

(5.42) and Assumption 3 that

zn ≥ c (5.62)

for all n. Let

z = [z1, ..., zk]
T ∈ Rk (5.63)

and also define

ZA = σ−2Diag(‖z‖2/2, ‖z‖2/2). (5.64)

Because of (5.62), it can be seen that

det(ZA) ≥ det(Z∗A) (5.65)
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for all z, where Z∗A , cσ−2I2k/2 = cσ−2IoA. The equality holds when ZA = Z∗A, that is,

when zn = c for all n ∈ {1, ..., k}. We now consider the matrix

X , IA,k + ZA =
1

σ2

[
‖a‖2 + ‖z‖2/2 aTb

aTb ‖b‖2 + ‖z‖2/2

]
. (5.66)

By definition, X is symmetric and has a constant trace, that is, Tr(X) = σ−2(‖a‖2 +

‖b‖2 + ‖z‖2) = σ−2k for all a,b and z. Using Theorem 1.2 in [Popescu et al., 2004] it

follows that

det(X) ≤ det(X∗), (5.67)

for all a,b and z, where X∗ , σ−2Diag(k/2, k/2) = σ−2IoA. The equality holds when

X = X∗. Because IA,k, ZA � 0, it follows from Lemma 1 and (5.65)-(5.67) that det(IA,k) ≤
det(X)−det(ZA) ≤ det(X∗)−det(Z∗A). The equality holds when X = X∗ and Z = Z∗A. In

other words, IA,k is maximal when IA,k = X∗−Z∗A = (1−k)σ−2IoA = I11A. This concludes

the proof for Scenario A.

ii) We now present the proof for Scenario B. To this end, define

Z =

[
ZA ZB

ZB ZC

]
∈ R4×4, (5.68)

where ZA is given by (5.64) and

ZB = −σ−2Diag(‖z‖2
D1
/2, ‖z‖2

D1
/2),

ZC = σ−2Diag(‖z‖2
D2
/2, ‖z‖2

D2
/2),

(5.69)

where z is given by (5.63). We now consider the matrix

Y , IB,k + Z =

[
A+ ZA B + ZB

B + ZB C + ZC

]
,

[
YA YB

YB YC

]
,

where A,B,C are given by (5.41). To show that det(IB,k) is maximal when IB,k = I11B,

we suppose that the following hypotheses hold true (this will be shown later).

• Hypothesis 1 : det(Z) ≥ det(Z∗) for all z, where Z∗ = cσ−2IoB. The equality holds

when Z = Z∗.

• Hypothesis 2 : det(Y ) ≤ det(Y ∗) for all a,b and z, where Y ∗ = σ−2IoB. The equality

holds when Y = Y ∗.

Using the hypotheses and arguments similar to those presented for Scenario A, we can
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show that det(IB,k) is maximal when IB,k = Y ∗−Z∗ = (1− c)σ−2IoB = I11B. To complete

the proof for Scenario B we now prove the hypotheses as follows.

Proof of Hypothesis 1. If z̄ = z̄T, it follows that Z = Z∗ = 0. Thus, Hypothesis 1 holds

trivially. Now consider the case z̄ 6= z̄T. This implies that ZA � 0. Using the Schur’s

complement of matrix Z yields

det(Z) = det(ZA) det(ZC − ZBZ
−1
A ZB). (5.70)

From (5.69), we obtain

ZC − ZBZ
−1
A ZB = σ−2Diag(λ/2, λ/2), (5.71)

where λ = ‖z‖2
D2
− (‖z‖2

D1
)2/‖z‖2. Expanding λ, we have

λ‖z‖2 =

(
k∑

n=1

z2
nτ

2
n

)(
k∑

n=1

z2
n

)
−

(
k∑

n=1

z2
nτn

)2

=
1

2

k∑
i,j=1

z2
i z

2
j (τi − τj)2

︸ ︷︷ ︸
,M

> 0.

From (5.64), (5.70), and (5.71) it follows that

det(Z) =

(
σ−4‖z‖4

4

)(
σ−4λ2

4

)
=
σ−8

16
M2 > 0.

It can be easily seen that when the sampling interval is fixed, that is τn, n ∈ {1, ..., k} is

constant, then M is lower bounded by the lower bound of zn for n ∈ {1, ..., k}. Because

of (5.62), det(Z) is smallest when zn = c. Substituting zn = c for all n ∈ {1, ..., k} in

(5.68) we conclude that det(Z) is smallest when Z = cσ−2IoB = Z∗.

Proof of Hypothesis 2. Consider the matrix Y . It can be checked that the trace of each

block of Y is always constant. Specifically, Tr(YA) = Tr(A+ZA) = ‖a‖2 + ‖b‖2 + ‖z‖2 =

k/σ2. Similarly, Tr(YB) = Tr(B + ZB) = ∆1/σ
2 and Tr(YC) = Tr(C + ZC) = ∆2/σ

2.

Applying Theorem 1.2 in [Popescu et al., 2004] it follows that det(Y ) is maximized if and

only if each block is a scaled identity matrix of the form YA = Tr(YA)I2/2 = σ−2kI2/2, YB =

Tr(YB)I2/2 = σ−2∆1I2/2 and YC = Tr(YC)I2/2 = σ−2∆2I2/2. Comparing with (5.47), this
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proves Hypothesis 2, thus completing the proof for Scenario B and Theorem 5.1. �

5.9.2 Proof of Proposition 5.1

The proof is done for Scenario A. The proof for Scenario B is identical. Theorem 5.1

implies that the range information is maximal when IA,k = I11A. This, together with

(5.44), (5.45) and (5.61) implies that

‖a‖2 = ‖b‖2 = (1− c)k/2, (5.72a)

aTb = 0. (5.72b)

We now show that the tracker’s trajectory stated in Proposition 5.1 satisfies (5.72).

i) We first consider the case where the tracker and the target are at the same depth, that

is, z = zT and therefore c = 0. Using Lemma 5.3, (5.72) can be rewritten as

k∑
n=1

cos2(γn) =
k∑

n=1

sin2(γn) = k/2, (5.73a)

k∑
n=1

cos(γn) sin(γn) = 0. (5.73b)

For k ≥ 3, it is well-known that to satisfy (5.73) the displacement between any two

successive angles must be equal and satisfies (γn+1 − γn)k = 2πl, where l = 1, 2, ...,

see [Bishop et al., 2010,Moreno-Salinas et al., 2013]. If the tracker can be controlled such

that (5.48) is satisfied then at discrete time instants k = 2πl/ω = Nl, IA,k = I11A, where

l = 1, 2, ....

ii) We now consider the case where the tracker and the target are at different depths.

A solution to (5.72a) is a2
n + b2

n = 1 − c for all n ∈ {1, ..., k}. Further, as shown in the

proof of Theorem 5.1, in order to obtain the maximal range information, dn = dmax for all

n ∈ {1, ..., k}. Hence, it follows from (5.38) that the trajectory of the tracker must satisfy

(xn − xT,n)2 + (yn − yT,n)2 = d2
max − (z − zT)2 for all n ∈ {1, ..., k}. This implies that the

tracker must encircle the target with radius r ,
√
d2

max − (z − zT)2. This completes the

proof. �
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5.9.3 Proof of Theorem 5.2

i) We first consider Scenario A. To this end, let

z[i,α]
n = (z̄[i] − z̄[α]

T )2/(d[i,α]
n )2 (5.74)

and define vector z[i,α] = [z
[i,α]
1 , ..., z

[i,α]
k ]T ∈ Rk. Define also the matrix

Zα =

p∑
i=1

1

σ2

[∥∥z[i,α]
∥∥2
/2 0

0
∥∥z[i,α]

∥∥2
/2

]
.

Consider now the matrix F , I [α]
A,k + Zα, where I [α]

A,k given by (5.39). It can be checked

that F has a constant trace, that is, Tr(F ) =
∑p

i=1(‖ai,α‖2 + ‖bi,α‖2 +
∥∥z[i,α]

∥∥2
) =∑p

i=1 σ
−2k = pσ−2k. Using Theorem 1.2 in [Popescu et al., 2004], we conclude that det(F )

is maximal when F = F ∗ , pσ−2kI2/2 = pσ−2IoA. Furthermore, because z
[i,α]
n ≥ c[i,α] for

all d
[i,α]
n it is obvious that det(Zα) is smallest when Zα=Z∗α ,

∑p
i=1 c

[i,α]σ−2IoA. Similar

to the proof of Theorem 1 for Scenario A, we conclude that det(I [α]
A,k) is maximal when

I [α]
A,k = F ∗ − Z∗α = Ī [α]

A,k. This concludes the proof for Scenario A.

ii) The proof for Scenario B follows using the methodology adopted in the proof for

Scenario A. �

5.9.4 Proof of Proposition 5.2

We prove this proposition by showing that the conditions on the trackers’ trajectories given

in Proposition 5.2 yield the optimal range information matrices introduced in Theorem

5.2 for the case of two trackers (p = 2) and a single target. The proof is done for Scenario

A. The methodology adopted carrying over to the proof of Scenario B.

Theorem 5.2 implies that in order to maximize the range information, one must have

I [α]
A,k = Ī [α]

A,k. From (5.39) and (5.49), this implies that

2∑
i=1

1

σ2

[
‖ai,α‖2 aT

i,αbi,α

aT
i,αbi,α ‖bi,α‖2

]
=

(
2−

2∑
i=1

c[i,α]

)
σ−2IoA. (5.75)
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Equation (5.75) is equivalent to

2∑
i=1

∥∥a2
i,α

∥∥ =
2∑
i=1

‖bi,α‖2 = (2−
2∑
i=1

c[i,α])k/2, (5.76a)

2∑
i=1

aT
i,αbi,α = 0 (5.76b)

i) We now consider the case when the trackers and the target are at the same depth, that

is, z̄[i] = z̄[α] for all i ∈ {1, 2}. Using Lemma 5.3, (5.76b) can be rewritten as

k∑
n=1

cos(γ[1,α]
n ) sin(γ[1,α]

n ) + cos(γ[2,α]
n ) sin(γ[2,α]

n ) = 0 (5.77)

for all n ∈ {1, ..., k}. It can be easily checked that β
[1,2;α]
n , γ

[1,α]
n − γ[2,α]

n = π/2 + lπ for

all n ∈ {1, ..., k} and l ∈ Z satisfies (5.77). This concludes the case where the trackers

and the target are at the same depth .

ii) We now consider the case when the trackers and the target are at different depths.

A solution to (5.76a) is (a
[i,α]
n )2 + (b

[i,α]
n )2 = 1 − c[i,α] for all n ∈ {1, ..., k}. Further, as

shown in the proof of Theorem 5.2, d
[i,α]
n = dmax for all i ∈ S and n ∈ {1, ..., k} in order to

obtain the maximal range information. Hence, it follows from (5.38) that the trajectory

of the trackers must satisfy
∥∥∥p[i]

n − q
[α]
n

∥∥∥ =

√
d2

max − (z[i] − z[α]
T )2 for all i ∈ {1, 2} and

n ∈ {1, ..., k}. This completes the proof. �

5.9.5 Proof of Proposition 5.3

i) For the cases when the trackers and the targets have the same depth, the proof can be

found in Proposition 3 in [Bishop et al., 2010].

ii) If the depths are different, the proof can be done analogously. �

5.9.6 Proof of Theorem 5.3

We start the proof for Scenario A, then followed for Scenario B.

i) For Scenario A, from (5.33), it follows that det(IA,k) =
∏q

α=1 det(I [α]
A,k)). Hence,

det(IA,k) is maximal when each det(I [α]
A,k));α ∈ {1, ..., q} is maximal. In Theorem 5.2,

it was shown that for each α, det(I [α]
A,k) is maximal when I [α]

A,k = Ī [α]
A,k for all α ∈ {1, ..., q}.
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This implies that det(IA,k) is maximal when IA,k = Diag(Ī [1]
A,k, ..., Ī

[q]
A,k). This concludes

the proof for Scenario A.

ii) The proof for Scenario B follows similar arguments. �
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In the previous chapter, we proposed a solution to the range-based SLAP problem

that builds upon the idea of maximizing range-related information for estimation of the

targets’ state using an MPC like strategy. This approach is “optimal” in the sense that it

optimizes trackers’ trajectories to acquire maximal range-related information for the es-

timating the targets’ states. The approach is also “universal” because it can be extended

easily to integrate other tasks such as targets’ pursuit, obstacle avoidance, and even col-

lision avoidance among the trackers. Furthermore, with the MPC strategy the trackers’

constraints on their inputs (velocities, accelerations) are taken into account explicitly in

the process of planning trackers’ trajectories. However, as any optimization based control

method, the main drawback of this approach is on its requirement in solving an on-line

nonlinear optimization problem, which demands high computation burden and resource.

We recall that in Chapter 5, for the use of multiple trackers, the control and estimation

algorithms are implemented in a centralized manner, which might be not efficient in ap-

plications where the communications among the trackers are constrained by a network

topology. Solving the above problems of Chapter 5 is the main subject of this chapter.

The results obtained in the previous chapter provide a useful understanding of the types

of optimal trajectories that the trackers need to perform to acquire maximal range infor-

mation for the estimation of the targets’ states. Exploiting this understanding and the

knowledge on observability gained in Chapter 4, this chapter proposes an efficient strat-

egy (in terms of computation and implementation) to the range-based SLAP problem

resorting to tools from distributed estimation and control. We first address the case of a

single tracker, as a means to introduce the basic techniques upon which the solution for

the multiple tracker problem builds. In the single tracker case, at the motion planning

level, a trajectory is assigned to the tracker that yields global target observability and

maximizes the range-based information available for target estimation purposes. Stated

simply, the trajectory consist of the composition of motions along the target’s trajectory

and along a closed path around the target. Borrowing from concepts of path following,

the latter is parameterized by a free spatial parameter (e.g. path length), the dynamics

of which can be chosen to shape the approach of the tracker to the closed path. The re-

sulting trajectory can be viewed as a general spatial-temporal (S-T) curve with a hybrid

curve parametrization. At the control level, we derive control laws for robust trajectory

tracking and show that under mild assumptions on the convergence of the target’s state

estimation, the tracker converges to and remains in a desired vicinity of the target.

For the case of multiple trackers, we propose an efficient distributed estimation and con-

trol (DEC) strategy for the trackers that takes into account explicitly the constraints on
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the inter-tracker communication network. To this end, a distributed extended Kalman

filter (DEKF) and a distributed control law for cooperative S-T curves tracking are de-

veloped to cooperatively pursue and localize the target. Using this set-up, all trackers

converge to a vicinity of the target while keeping an optimal tracker-target relative ge-

ometry that maximizes the range information acquired to estimate the target’s state. We

then propose event-triggered communication mechanisms for the DEC strategy in which

the vehicles only need to communicate with their neighbors when found necessary; thus,

reducing number of communications and communication frequency among the vehicles.

The stability of the complete closed-loop DEC systems (with and without the ETC mech-

anisms) are analyzed rigorously and the efficacy of the proposed strategy is illustrated

with intensive simulations for 2-D and 3-D cases.

6.1 Literature review

Range-based SLAP using autonomous vehicles is a challenging but interesting topic that

has been receiving a widespread interest recent years. We refer the reader to Section 4.1 of

Chapter 4 and Section 5.1 of Chapter 5 for a summary on the state of the art of this topic.

There are two fundamental coupled problems in the context of range-based SLAP. The

first involves the localization task, that is, how plan and control the vehicles, called tracker

to perform “exciting” maneuver in order to acquire “sufficiently” rich range information

for the estimation of target’s state. Most work reported in the literature address with

this problem, using classical tools for observability analysis ( [Batista et al., 2011, Pillon

et al., 2016, Jauffret et al., 2017, Arrichiello et al., 2013, Indiveri et al., 2012, Masmitja

et al., 2018,Ristic et al., 2002,Hung and Pascoal, 2020b]), or estimation theory like Fisher

information matrix ( [Crasta et al., 2018, Hung et al., 2020a]). The second problem

relates to the pursuit task, that is, how to control the vehicles such that they converge to

a vicinity of the target while holding a desired relative geometric formation with access to

range measurements only. Several solutions to this problem are presented in the literature

[Chaudhary et al., 2016,Nguyen et al., 2018,Hung et al., 2020a]. For example, a possible

solution is to estimate the position of the target and then use this information to design

a tracking controller to pursue the target [Nguyen et al., 2018,Hung et al., 2020a]. With

this approach, the localization and pursuit tasks are tightly coupled. A solution that does

not requires an explicit estimation step is reported in [Chaudhary et al., 2016]. However,

this approach requires that the time derivative of the range measurement be available to

the tracker.
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From a theoretical standpoint, the range-based SLAP problem can be solved with only one

tracker or a set of multiple trackers, see some preliminary results on observability analysis

in [Hung and Pascoal, 2020b, Crasta et al., 2018, Hung et al., 2020a]. Each scenario has

its own advantages and disadvantages and technical challenges. It is obvious that using

only one tracker is more cost-effective and easier to implement. However, using multiple

trackers potentially enhances both the performance and robustness of the localization

and pursuit system. In addition, as shown in [Hung and Pascoal, 2020b, Crasta et al.,

2018], using multiple trackers makes the motions of the latter smoother. The intrinsic

problem when using multiple trackers is how to make them cooperate in an efficient

manner in order to localize and pursue a target. To address this problem, a receding

horizon planing, control and estimation framework was proposed in [Hung et al., 2020a]

to solve the problem in a centralized manner. However, it might be difficult and inefficient

to implement this approach in practice when the trackers are distributed over a large

spatial region. A more efficient approach in terms of data exchanged among the trackers

consists of using a distributed state estimation framework, where each tracker estimates

independently the state of the target using its own measurements and reduced additional

information received from the neighboring trackers. Due to the growing interest in wireless

sensor networks, the problem of distributed state estimation has received great attention

in recent years. This led to the development of many methods to tackle the nonlinear

distributed estimation problem based on classical techniques such as extended Kalman

filtering [Battistelli and Chisci, 2016], moving horizon estimation [Farina et al., 2012], and

particle filtering [Manuel and Bishop, 2014]. For a survey of solutions to this problem the

reader is refereed to [Rego et al., 2019b].

Motivated by the above considerations, we propose a systematic approach to solve the

problem of range-based SLAP for 2-D and 3-D cases with i) a single autonomous vehicle

and ii) multiple autonomous vehicles. Specifically, the main contributions include the

following:

(i) Inspired by recent results on observability analysis in [Hung and Pascoal, 2020b] and

optimal tracker motion planing in [Hung et al., 2020a] in the context of range-based

target localization, a trajectory is computed for each tracker to go through. An

ideal trajectory consists of the composition of two types of motion: along the target’s

trajectory and on a spatial path encircling the target. For this reason, the trajectory

can be viewed as a spatial-temporal (S-T) curve with a hybrid parameterization.

By parameterizing the curves appropriately it can be guaranteed that if the trackers

track the desired S-T curves accurately, then the target motions become observable
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and, at the same time, the trackers converge to an optimal desired relative formation

that, in a well defined mathematical sense, renders the range-information acquired

“maximal” for target state estimation purposes.

(ii) Two types of trajectory tracking controllers that use the estimated target’s state are

derived for the trackers to track the desired S-T curves. The controllers are shown

to be robust against bounded errors in the estimate of the target’s sate.

(iii) For the case of multiple trackers, we propose an efficient distributed estimation and

control (DEC) strategy for the trackers to localize and pursue the target in a co-

operative manner. The aim of the DEC strategy is twofold: i) to coordinate the

trackers along the planed S-T curves in order for them to reach and maintain a

desired relative formation and ii) to fuse the information about the target’s state

estimated by each tracker so that all trackers reach consensus on the estimate of the

target’s state. Exploiting tools from network sciences and algebraic graph theory,

the DEC strategy takes into account explicitly the constraints of the communica-

tion network topology established among the trackers, where each tracker is only

capable of exchanging information with a sub-set of trackers in the network. The

proposed DEC ensures that asymptotically, all trackers reach consensus on the esti-

mates of the target’s state and maintain a desired geometrical formation in a vicinity

of the target. We then propose event-triggered communication mechanisms for the

DEC strategy in which the vehicles only need to communicate with their neighbors

when found necessary; thus, reducing number of communications and communica-

tion frequency among the vehicles. The proposed strategy requires very limited

information to be exchanged among the trackers, thus making it very efficient for

practical implementation.

6.2 Notation and algebraic graph theory

6.2.1 Notation

In this chapter, we use the notation defined in Section 2.2.1 of Chapter 2. We also use the

following notation. Given vectors xi ∈ Rn; i = 1, ..., N , col(x1, ...,xN) , [xT
1 , ...,x

T
N ]T ∈

Rn×N . The notation N (µ, P ) denotes a Gaussian (normal) distribution with mean µ and

covariance matrix P .
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6.2.2 Algebraic graph theory

We refer to Section 2.2.2 of Chapter 2 for an introduction to algebraic graph theory and

some important results that will be used in this chapter.

6.3 Problem formulation and background results

6.3.1 Problem formulation

Trackers’ model

Consider a group of N(N ≥ 1) autonomous vehicles, henceforth called trackers, charged

with the task of localizing and pursuing a moving target. In what follows, {I} =

{xI , yI , zI} denotes a inertial frame and {B}[i] = {x[i]
B , y

[i]
B , z

[i]
B } denotes a body frame

attached to tracker i; i ∈ V . For each i ∈ V , let p[i] ∈ R3 be the inertial position vector of

the tracker expressed in {I}, and v[i] = [v
[i]
1 , v

[i]
2 , v

[i]
3 ]T its velocity vector expressed in the

body frame {B}[i], consisting of surge (v
[i]
1 ), sway (v

[i]
2 ), and heave (v

[i]
3 ) speed components.

The tracker’ kinematic model is given by

ṗ[i] = R(η[i])v[i], (6.1)

where R(η[i]) ∈ SO(3)1 is the rotation matrix from {B}[i] to {I}, locally parameterized

by a vector η[i] , [φ[i], θ[i], ψ[i]]T that contains the Euler angles of roll (φ[i]), pitch (θ[i])

and yaw (ψ[i]). Note that the time derivative of the rotation matrix satisfies

Ṙ(η[i]) = R(η[i])S(ω[i]), (6.2)

where ω[i] = [p[i], q[i], r[i]]T is the body-fixed angular velocity vector and S is a skew-

symmetric matrix defined as

S(ω[i]) =

 0 -r[i] p[i]

r[i] 0 -q[i]

-p[i] q[i] 0

 . (6.3)

1SO(3) , {R ∈ R3×3 : RRT = I3,det(R) = 1}
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In the present chapter, for simplicity of presentation, we consider that the trackers are

under-actuated vehicles for which the sway and heave speeds are negligible, i.e. v[i] =

[v
[i]
1 , 0, 0]; i ∈ V . The input of each tracker i is therefore defined as

u[i] = [v
[i]
1 , p

[i], q[i], r[i]]T ∈ R4, (6.4)

consisting of surge speed v
[i]
1 and angular velocity ω[i].

Remark 6.1. For the 2-D case, e.g. when the trackers are restricted to move in the

xI − yI horizontal plane, the tracker’s model (6.1) applies with η[i] = ψ[i] and ω[i] = r[i].

In this case, the tracker’s control inputs include the surge speed and the yaw rate, i.e.

u[i] = [v
[i]
1 , r

[i]]T ∈ R2 and S(ω[i]) =

 0 -r[i]

r[i] 0

. In practice, the tracker’s model (6.1) is

adequate for a wide class of under-actuated marine vehicles of which Medusa and Delfim

( [Abreu et al., 2016c]) and Charlie ( [Bibuli et al., 2009]) are representative examples.

Target’s model

Let q(t) ∈ R3 be the target’s trajectory to be tracked, and v(t) = q̇(t) be the target

velocity vector, both expressed in {I}. Even though the target’s trajectory is unknown,

we assume that the target changes its velocity slowly that its motion can be described by

a quasi-steady model of the form

ẋ(t) = Ax(t) + w(t), (6.5)

where x(t) = [qT(t),vT(t)]T ∈ R6 is the state of the target, v(t) is slowly varying, w ∼

N (0, Qt) is a zero mean Gaussian process noise with covariance Qt and A =

[
0 I3

0 0

]
.

Let xk = [qT
k ,v

T
k ]T ∈ R6 be the state of the target, at the discrete time k; k ∈ N. For

target state estimation purposes (e.g. using a discrete EKF), (6.5) can be discretized

using Euler’s method, yielding

xk+1 = Fxk + wk, (6.6)

where

F =

[
I3 TsI3

03×3 I3

]
, (6.7)
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Ts is the sampling period, and wk ∼ N (0, Q);Q = T 2
sQt.

Remark 6.2. For the 2-D case, the target model (6.6) applies with x ∈ R4 and F = I2 TsI2

02×2 I2

 .
Range measurement model

Assume that each tracker i is equipped with an acoustic unit that measures its distance

to the target. Let also d
[i]
k be the true distance between tracker i; i ∈ V and the target at

discrete time k, defined as

d
[i]
k =

∥∥∥p[i]
k − qk

∥∥∥, (6.8)

where p
[i]
k denotes the position of tracker i at discrete time instant k. Further, let y

[i]
k

denote the range measurements which, we assume, are corrupted by white Gaussian noise

according to the range measurement model

y
[i]
k = d

[i]
k + η

[i]
k , (6.9)

where η
[i]
k ∼ N (0, σ); i ∈ V is Gaussian measurement noise. The cooperative target

localization and pursuit problem that is the main topic of this chapter can now be formally

defined as follows.

Problem 6.1 (Cooperative target localization and pursuit). Consider a group of N(N ≥

1) trackers, with models described by (6.1) that are in charge of localizing and pursuing

an unknown target whose dynamics are described by (6.5). Assume the trackers’ inter-

communication network is modeled by a digraph G. Suppose that the trackers’ positions

and orientations are known. Assume further that the trackers can measure ranges to the

target according to the measurement equation (6.9). Let x̂[i] denote an estimate of the

target’s state x computed by tracker i. Design a distributed control law for u[i]; i ∈ V and

a distributed estimation algorithm for x̂[i]; i ∈ V to fulfill the following tasks:

• Cooperative pursuit: ensure that asymptotically all trackers stay in a given vicinity

of the target, i.e.

lim
t→∞

∥∥p[i](t)− q(t)
∥∥ ≤ rc, (6.10)
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for a given rc.

• Cooperative localization (estimation): ensure that all estimates x̂[i] of the target’s

sate reach consensus, that is,

lim
k→∞

∥∥∥x̂[i]
k − xk

∥∥∥ ≤ re (6.11)

for all i = 1, ...N , where rc, and re are given positive values.

Remark 6.3. The problem formulation above can be easily extended to the cases where

the trackers and the target move in different horizontal planes, e.g. when the trackers are

at the surface while the target is underwater with a known depth. In this scenario, (6.10)

implies that the trackers should remain in a desired 2-D region centered at the projection

of the target on the surface horizontal plane.

6.3.2 Background results

In this subsection, we briefly recall some preliminary results on target motion observability

and optimal tracker trajectory generation for range-based target localization. The results

described will be used to plan the motion for the trackers in the next section.

Result 1: single tracker-single target

Consider the scenario where one tracker is used to localize a target moving with unknown

constant velocity i.e. v(t) is constant. As shown in [Hung and Pascoal, 2020b], in a

2-D setting the target’s state (position and velocity) is observable, i.e. the target’s state

is uniquely determined if the trajectory of the tracker belongs to a class of “cycloid-

type” trajectories defined by p(t) = [px(t), py(t)]T = [rx sin(ωt) + cxt, ry cos(ωt) + cyt]
T

with rx, ry, ω 6= 0. Furthermore, using the Fisher Information Matrix (FIM) as a means

to quantifying the range information available for target estimation, it was shown that

a class of optimal trajectories that maximize range information consists of having the

tracker encircle the target, see [Hung et al., 2020a,Crasta et al., 2018]. In 3-D, any “helix-

type” trajectory defined by p(t) = [rx sin(ω1t) + cxt, ry cos(ω1t) + cyt, rz sin(ω2t) + czt]
T

with rx, ry, rz, ω1 6= ω2 6= 0 guarantees observability of the target’s state, see Theorem 2

in [Hung and Pascoal, 2020b].
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Result 2: two trackers-single target

Consider the scenario where two trackers are used to localize a target. In this case, the

target’s state is completely observable at an arbitrarily time t0 if and only if the columns

of matrix O(t), defined by

O(t) , [(p[2](t)− p[1](t))T (t− t0)(p[2](t)− p[1](t))T], (6.12)

are linearly independent on an interval [t0, t] for some t > t0, see Theorem 5 in [Hung and

Pascoal, 2020b]. In the 2-D case, it was shown in [Hung et al., 2020a] that the optimal

trajectories for the tracker that maximize the range-information available for estimating

the target’s state are the ones satisfying

(p
[1]
k − qk) ⊥ (p

[2]
k − qk) (6.13)

for all range measurement time instants k, i.e. the relative position vectors from each

tracker to the target are orthogonal, see Proposition 2 in [Hung et al., 2020a]. Note that

this tracker-target geometry is optimal for target state estimation for the cases where the

target’s velocity vector is known, see [Crasta et al., 2018,Hung et al., 2020a].

Result 3: N trackers-single target

If N trackers (N ≥ 3) are used to localize the target, it was shown in in [Hung et al.,

2020a], Proposition 3, for the 2-D case that the optimal tracker trajectories for target

state estimation are the ones for which the trackers’ positions are distributed uniformly

around the target and the angle made by the relative vectors from two adjacent trackers

to the target is 2π/N . This result is illustrated in Fig.6.1 for the case of three trackers.

In the next section, we will use the aforementioned knowledge to plan optimal trajectories

for the trackers and design a cooperative distributed control and estimation strategy to

simultaneously localize and pursue the target.

6.4 Target localization and pursuit with one tracker

We start by consider a scenario where only one tracker is used to localize and pursue

a target. In this case, for the sake of clarity we drop the superscript [i] in the relevant

variables in this section. In what follows we derive a desired trajectory for the tracker,
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Figure 6.1: Examples of optimal relative tracker-target geometries that maximize the infor-
mation available to estimate the target’s state. (Left: N = 2, Right: N = 3).
Positions: q (target), p[i] (trackers).

together with the corresponding trajectory tracking controllers.

6.4.1 A trajectory tracking strategy for target pursuit

For the purpose of illustrating the underlying idea of the proposed method, we assume

that the target’s position q(t) and its velocity v(t) are known. This assumption will be

relaxed in the next subsection. Let P : γ → r(γ) ∈ R3 be a path defined in an inertial

frame, given by

r(γ) = [rx cos(γ + γ0), ry sin(γ + γ0), rz sin(
γ

c
+ γ0)]T, (6.14)

where γ is a path parameterizing variable (e.g. path length), and rx, ry, rz ∈ R+, c ∈
R \ {0, 1} and γ0 ∈ R are constant parameters. For the 2D-case, r(γ) ∈ R2 is defined as

r(γ) = [rx cos(γ + γ0), ry sin(γ + γ0)]T. (6.15)

Borrowing the concept of moving path following (MPF) proposed in [Oliveira et al.,

2016,Reis et al., 2019] we let pd : R× R≥0 → R3 be a desired S-T curve that consists of

the composition of motions along the target and along a path around the target, defined

as

pd(t) = r(γ(t)) + q(t), (6.16)

where the spatial part r(γ) is described by (6.14) and (6.15) for the 3-D and 2-D cases,

respectively. The underlying idea behind the method proposed for target pursuit is that

if the tracker can be controlled s.t. p → pd, then it will converge to a vicinity of the

target defined by r, i.e. ‖p− q‖ → ‖r(γ)‖
(6.14)

≤
√
r2

x + r2
y + r2

z for all γ. For reasons that
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Figure 6.2: Illustration of the proposed methodology in 2-D.

will become clear latter, γ is allowed to be a function of time, with dynamics to be chosen

appropriately to shape the approach of the tracker to the desired S-T curve. Furthermore,

if the dynamics of γ can be chosen s.t. γ̇ → ωd, where

ωd = ω̄, (6.17)

with a constant ω̄ 6= 0, then the tracker will encircle the target with angular rate ω̄. For

the 2-D case, the S-T curve described by (6.16) that the tracker must track takes the

form of the optimal trajectories for range-based target localization, while for 3-D case, it

ensures the observability of the target’s state, see Section 6.3.2.

Inspired from the work in [Aguiar and Hespanha, 2007] we now derive two tracking con-

trollers for the tracker in order have it pursue and encircle the target. To this end, define

ep =RT(η)(p− pd)− ε
(6.16)
= RT(η)(p− r(γ)− q)− ε

(6.18)

as the position error between the tracker and the desired trajectory expressed in the

tracker’s body frame {B}, where ε is an arbitrarily small non-zero vector, see the illus-

tration of this error for the case of 2D in Fig.6.2. The idea behind the use of vector ε

was originally introduced in [Aguiar and Hespanha, 2007] and will become clear next. By

definition, if ep converges to zero then the tracker converges to the vicinity of the target

centered at the target with radius ‖r‖ + ‖ε‖. Clearly, by proper choice of rx, ry, rz, and

ε s.t. ‖r(γ)‖ + ‖ε‖ ≤ rc for all γ the pursuit task described by (6.10) will be fulfilled.

Define also

eγ = γ̇ − ωd (6.19)
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as the speed tracking error for the temporal evolution of γ. Let e = [eT
p , eγ]

T be the

complete tracking error vector. Our main objective is to derive tracking control laws

for u defined in (6.4) to drive e to zero. Taking the time derivative of (6.18) and using

(6.1),(6.2),(6.3), (6.4) yields the dynamics of ep, given as

ėp = −S(ω)ep − S(ω)ε+ v −RT(η) (r′(γ)γ̇ + v)

= −S(ω)ep + ∆u−RT(η) (r′(γ)γ̇ + v)
(6.20)

where r′(γ) , ∂r(γ)
∂γ

, and

∆ =

1 0 -ε3 ε2
0 ε3 0 -ε1
0 -ε2 ε1 0

 ,∆ =

[
1 ε2
0 -ε1

]
(6.21)

for the 3-D and the 2-D case, respectively where εi denotes the ith component of vector

ε. From (6.19) the dynamics of the error eγ are described by

ėγ = γ̈. (6.22)

To drive the tracking error e to zero, the following controllers can be used:

Tracking Controller - Type I

u = k(x)

γ̇ = ωd.
(6.23)

Tracking Controller - Type II

u = k(x)

γ̈ = −kγeγ + eT
pR

T(η)r′(γ),
(6.24)

with k(x) given by

k(x) = ∆̄ (RT(η) (r′(γ)ωd + v)−Kpep) , (6.25)

where ∆̄ = ∆T(∆∆T)−1, Kp is a positive definite matrix with appropriate dimension,

kγ > 0, and ωd is given by (6.17). With the proposed controllers, we obtain the following

result.

Lemma 6.1. Consider the tracking error system described by (6.20) and (6.22). Suppose
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6.4 Target localization and pursuit with one tracker

that the target’s state x (including both the position q and velocity v) is completely known.

Then, both tracking controllers given by (6.23) and (6.24) guarantee that the tracking error

e converges to zero exponentially fast.

Proof: See section 6.10.1 .

Remark 6.4. The main difference between Controller-Type I given by (6.23) and Controller-

Type II given by (6.24) is the strategy to control the evolution of the path parameter γ.

With the first the derivative of γ is fixed, whereas with the second the dynamics of γ de-

pends on feedback terms from the tracking error. The first is clearly simpler to implement,

yet thanks to the feedback, the second has the potential to speed up the convergence of the

tracking error to zero.

Remark 6.5. In (6.18), imposing ε as a non-zero vector is made to ensure that the

matrix ∆̄ non-singular, thus ensuring that the proposed controllers given by (6.23) and

(6.24) are well-defined.

6.4.2 Unknown target pursuit

In the previous section, we showed that if the target’s state is fully known, then both

control laws (6.23) and (6.24) steer the tracker to a vicinity of the target and encircle it

with a desired angular speed ωd = ω̄. The convergence rate was shown to be exponential.

However, in the context of target localization and pursuit, the target’s state is unknown,

and must be estimated on-line. To address this problem, we suppose that the tracker is

equipped with a filter, which is capable of estimating the target’s state (both the target’s

position and velocity vectors). This can be done using the target model given in (6.7) and

the range measurement model (6.9), as explained later. Let x̂ = [q̂, v̂] be the estimate

of the target’s state x, where q̂ denotes an estimate of the true target position vector q,

while v̂ denotes the estimate of the true target velocity vector v. Define also

êp = RT(η) (p− r(γ)− q̂)− ε (6.26)

which is similar to (6.18) but the estimated target position (q̂) is used, instead of the true

target position q. The following control laws are proposed for unknown target pursuit.
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6.4 Target localization and pursuit with one tracker

Tracking Controller - Type I - Unknown Target

u = k(x̂)

γ̇ = ωd.
(6.27)

Tracking Controller - Type II - Unknown Target

u = k(x̂)

γ̈ = −kγeγ + êT
pR

T(η)r′(γ),
(6.28)

where eγ is given by (6.19), ωd is given by (6.17), and

k(x̂) = ∆̄ (RT(η) (r′(γ)ωd + v̂)−Kpêp) . (6.29)

where êp is given by (6.26). Let x̃ be the estimation error of the target’s state, defined as

x̃ = x̂− x. (6.30)

The following theorem states the main result on single tracker target pursuit.

Theorem 6.1. Consider the tracking error system described by (6.20) and (6.22). Then,

the controllers given by (6.27) and (6.28) guarantee that the tracking error system is input-

to state stable (ISS) with respect to the state e and the input x̃, i.e. there exist β ∈ KL

and α ∈ K functions that satisfy

‖e‖ ≤ β(‖e(0)‖, t) + α(sup
t≥0
‖x̃(t)‖) (6.31)

for any initial condition e(0).

Proof: See section 6.10.2.

The theorem implies that the tracking controllers (6.27) and (6.28) are robust against

the estimation error x̃, i.e. the tracking error e is bounded for any bounded estimation

error x̃. In addition, inequality (6.31) implies that asymptotically, the tracking error e

depends only on the estimation error x̃ and, if x̃ converges to zero, then e converges to

zero as well. Clearly, the above analyses imply that the tracking error depends only on

the performance of the filter that estimates the target’s state.
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6.5 SLAP with multiple trackers

In the context of the present chapter, for the sake of simplicity we adopt an EKF in infor-

mation form (also called the information filter in the literature) to estimate the target’s

state. Note that the information form and the standard form of EKF are equivalent.

The latter propagates the covariance matrix of the estimated state, whereas the former

propagates the inverse of the covariance matrix. We use the information form because it

is more convenient to decentralize the filter in the case of multiple trackers, to be studied

later, where a distributed EKF is required to address the constraint on the inter-tracker

communication network [Mutambara, 1998].

The EKF in information form is described as follows. Let Yk , {ym}km=0 denote the set

of ranges from the tracker to the target acquired up to time k. Let also p(xk|Yk−1) ∼
N (x̂k|k−1, Pk|k−1) and p(xk|Yk) ∼ N (x̂k|k, Pk|k) be the prior and posterior densities of the

target’s state, estimated at time k, respectively. Denote by z and Ω the information vector

and the information matrix, respectively, defined as

zk|k−1 , P−1
k|k−1x̂k|k−1 zk|k , P−1

k|k x̂k|k

Ωk|k−1 , P−1
k|k−1 Ωk|k , P−1

k|k .
(6.32)

With the above definition, the prior and posterior densities of the target can be computed

recursively using Algorithm 6.1 below. In the algorithm, W,V are arbitrarily positive def-

inite matrix of appropriate dimensions [Battistelli and Chisci, 2016]. A typical choice for

such matrices is to take W as an estimate of the inverse covariance of the process distur-

bance wk, and each V as an estimate of the inverse variance of the range measurement

noise ηk. With the range measurement model (6.9), V = 1/σ. With the EKF, the estima-

tion error x̃ is guaranteed to be bounded provided that the estimate of the target’s state

is initialized sufficiently close to the true target’s state, and the process and measurement

noises are sufficiently small [Reif et al., 1999].

6.5 SLAP with multiple trackers

In this section, we consider scenarios where multiple trackers are used in a cooperative

manner to localize and pursue the target. The use of multiple trackers potentially en-

hances both performance and robustness of the target localization and pursuit system.

Intuitively, more trackers means that more range measurements can be acquired on a

given interval and, therefore, more information is available to estimate the target’s state.

Multiple trackers also implies that redundant trackers are always available in cases any
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6.5 SLAP with multiple trackers

Algorithm 6.1 EKF for a single tracker

1: procedure Initialization
2: At k = 0, initialize x̂1|0, P1|0
3: Ω1|0 = P−1

1|0 , z1|0 = P−1
1|0 x̂1|0

4: return x̂1|0,Ω1|0, z1|0

5: At each discrete time k, repeat the following procedures:
6: procedure Measurement-update
7: if obtain a new range then
8: Ck = ∂dk

∂x
(x̂k|k−1)

9: ỹk = yk − dk(x̂k|k−1) + Ckx̂k|k−1

10: Compute the innovation terms

z̃k = (Ck)
>V ỹk, Ω̃k = (Ck)

>V Ck. (6.33)

11: else set z̃k = 0, Ω̃k = 0.

12: Correction
zk|k = zk|k−1 + z̃k, Ωk|k = Ωk|k−1 + Ω̃k (6.34)

return zk|k,Ωk|k, x̂k|k = Ω−1
k|kzk|k

13: procedure Prediction

x̂k+1|k = F x̂k|k

Ωk+1|k = W −WF (Ωk|k + F>WF )−1F>W
(6.35)

return x̂k+1|k,Ωk+1|k, zk+1|k = Ωk+1|kx̂k+1|k

trackers in the group fail their mission or must leave it for any reason. However, both from

a theoretical and practical standpoint, the use of multiple trackers raises new challenges

in terms of the design of the corresponding control and target motion estimation systems.

The main challenge comes from the fact that communications among the trackers are con-

strained by the inter-tracker communication network, where trackers can only exchange

information with their neighbors rather than with all trackers in the network. This re-

quires that the design of control and estimation systems be addressed in a distributed

manner.

6.5.1 Distributed estimation and control architecture

At the control level, the main objective is to design a distributed control system to drive

the trackers along desired trajectories that i) ensure the observability of the target’s

motion and ii) maintain an optimal geometrical formation relative to the target with
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6.5 SLAP with multiple trackers

the objective of acquiring maximal range-information to estimate the target’s state; see

the characterization of such trajectories in Sections 6.3.2, and illustrations of optimal

geometrical formations in Fig.6.1 for different numbers of trackers. Notice that there

may exist multiple trajectories that satisfy conditions i) and ii). However, for the sake of

simplicity, we inherit the methodology for the case of single tracker-single target presented

in the previous section. That is, for each tracker i, a desired S-T curve, defined as

p
[i]
d (γ[i], t) = r(γ[i]) + q(t), (6.36)

is assigned for it to track, where q(t) is the target’s trajectory and r[i](·) is a corresponding

spatial path encircling the target. This path is described by (6.14) and (6.15) for 3-D

and 2-D cases, respectively, and parameterized by the variable γ[i] and the set of constant

parameters {r[i]
x , r

[i]
y , r

[i]
z , γ

[i]
0 }. It was explained in the previous section that if trackers can

be controlled such that they converge to their corresponding S-T curves, then the pursuit

task stated in Problem 6.1 will be fulfilled. In addition, with this design, if the paths

r[i](·); i ∈ V are parameterized appropriately such that γ
[1]
0 − γ

[2]
0 = π/2 for N = 2 and

γ
[i]
0 −γ

[j]
0 = 2π/N for N ≥ 3, where i, j are any two adjacent trackers, then the S-T curves

will yield the desired geometrical formations relative to the target when γ[i] = γ[j] for

all i, j ∈ V . In this context, γ[i]; i ∈ V are called coordination states and the problem

of coordinating the S-T curves to make the coordination states become equal (reach

consensus) is called a coordination/consensus problem. This strategy borrows from the

concepts of cooperative path following explained in [Ghabcheloo et al., 2009,Hung et al.,

2020b,Rego et al., 2019a]. See also the diagrams that illustrate the key concepts behind

the design methodology in Fig.6.3.

With the new requirement on reaching an optimal geometrical formation relative to the

target, the cooperative target pursuit problem stated in Problem 6.1, see (6.10), is re-

stated as follows.

Problem 6.2 (Cooperative control for target pursuit). Consider the problem of cooper-

ative target localization and pursuit stated in Problem 6.1. Supposed that each tracker is

assigned a trajectory given by (6.36) to track. Find control laws for the trackers’ inputs

u[i] and for the evolution of the path parameters γ̇[i] (or γ̈[i]) to fulfill the following tasks:

i Tracking:

lim
t→∞

p
[i]
d (γ[i](t), t)− p[i](t) = 0 (6.37)
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6.5 SLAP with multiple trackers

for all i ∈ V.

ii Coordination (consensus):

lim
t→∞

γ[i](t)− γ[j](t) = 0, (6.38a)

lim
t→∞

γ̇[i](t) = ω̄ (6.38b)

for all i, j ∈ V, where ω̄ 6= 0 is the common desired nominal angular speed assigned

for the path parameters γ[i] for all i ∈ V.

Figure 6.3: Design methodology for cooperative target pursuit. (Left: N = 2, Right: N = 3).

Positions: q (target), p[i] (trackers), and p
[i]
d (desired S-T curve).

In order to solve the problem of cooperative target localization and pursuit while ful-

filling the coordination requirement stated in (6.38), we propose a distributed estimation

and control (DEC) system for each tracker i; i ∈ V , as depicted in Fig.6.4. The underlying

idea behind this architecture is briefly described as follows.

i) Cooperative Estimation: the main goal of this block is to solve the cooperative lo-

calization task given by (6.11) in a distributed manner. To this end, we adopt the

distributed EKF (DEKF) methodology proposed in [Battistelli and Chisci, 2016].

In the DEKF, the trackers exchange the latest PDFs about the target’s state (after

being corrected with the innovation information obtained by local range measure-

ments) with their neighbors and apply a fusion (consensus) algorithm. As a result

of this cooperative process, the estimates of the target’s state reach consensus and

are potentially more accurate than that obtained in the case each tracker estimates

the target’s state by itself (non-cooperative strategy).
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6.5 SLAP with multiple trackers

ii) Cooperative Control: the main goal of this block is to solve the coordination task

given by (6.38) by using a distributed coordination/consensus control law that com-

putes correction speeds v
[i]
c ; i ∈ V about the nominal speed ω̄ to coordinate the

path parameters and make them reach consensus. The control law for v
[i]
c uses local

information (γ[i]) (and possibly γ̇[i]) and information from its in-neighboring track-

ers (γ[j], γ̇[j]; j ∈ N [i]
in ). For this reason, the trackers are required to communicate

and exchange the corresponding path variables γ[i] (and possibly γ̇[i]) with theirs

neighbors.

iii) Tracking Controller: this controller aims to make the trackers converge to and follow

their assigned trajectorys given by (6.36), i.e. solve the tracking task given by (6.37).

To track the trajectories, the tracking controllers developed in previous section

will be used with a sightly modification that takes into account the cooperative

information provided by the cooperative layer.

The design of the complete DEC system is described next.

Tracking Controller  

Cooperative 
Estimation

(DEKF)

Cooperative 
Control  

Network

Cooperative-layer

Tracking-layer

Figure 6.4: The DEC system as seen by tracker i. In the figure, j ∈ N [i]
in .
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6.5 SLAP with multiple trackers

6.5.2 Cooperative target estimation

In this section, we propose a DEKF that solves the cooperative estimation problem defined

by (6.11). The design of the DEKF is inspired from the work in [Battistelli and Chisci,

2016] and is described next. Let Y
[i]
k , {y

[i]
m}km=0 denote the set of ranges to the target

measured by tracker i; i ∈ V and I [j]
k ; j ∈ N [i]

in the collective information (PDFs of the

target’s state estimated by its in-neighboring trackers) that the tracker has received up

to time k. For each tracker i let also

p[i](xk|Y [i]
k−1, I

[j]
k−1) ∼ N (x̂

[i]
k|k−1, P

[i]
k|k−1) : the local PDF of target before correction,

p[i](xk|Y [i]
k , I

[j]
k−1) ∼ N (x̃

[i]
k , P̃

[i]
k ) : the local PDF of target after correction

p[i](xk|Y [i]
k , I

[j]
k ) ∼ N (x̂

[i]
k|k, P

[i]
k|k) : the local PDF of target after fusion

The relation of the above PDFs is illustrated in Fig.6.5 while their parameters (means

Figure 6.5: The DEKF mechanism seen by Tracker i. In the figure, j ∈ N [i]
in .

and covariances) are computed by a DEKF proposed in Algorithm 6.2. Note that in the

algorithm, variables z[i] and Ω[i] (res. z̃[i] and Ω̃[i]) denote the corresponding information

vector and information matrix, respectively, and have the relation with means and co-

variances through (6.32). Compared with Algorithm 6.1, there are two key procedures,

namely, “Communication” and “Fusion”, that must be implemented prior to the “Pre-

diction” procedure. The “Communication” procedure is used to transmit the latest local
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6.5 SLAP with multiple trackers

PDF about the target estimated by each tracker to its out-neighbors. The “Fusion” pro-

cedure is implemented to fuse, at the level of each tracker, the local corrected PDF about

the target’s state with the PDFs received from the neighbors. This is done to improve

the accuracy of the target ’s state estimate and also to ensure that consensus is reached

on the estimates of the target’s state. This procedure can be implemented using (6.42).

Note that in these equations, π[i,j]; i ∈ V , j ∈ N [i]
in ∪ {i} are weighting parameters that

must be chosen such that π[i,j] > 0 and
∑

j∈N [i]
in ∪{i}

π[i,j] = 1 for all i ∈ V . The prediction

step is done similarly to the case of single tracker, computed by (6.43). Similar to Algo-

rithm 6.1, W is chosen as inverse of covariance matrix of the process noise while V [i] is

normally chosen as inverse of covariance matrix of the range measurement noise. That is,

V [i] = 1/σ for all i ∈ V .

Remark 6.6. Algorithm 6.1 is a special case of Algorithm 6.2 with N = 1.

Remark 6.7. For the sake of simplicity and in order to save on communications, at each

sampling period Algorithm 6.2 requires that the trackers exchange information with their

neighbors only one time in order to update the “Fusion” step. This is equivalent to setting

L = 1 in [Battistelli and Chisci, 2016], where L is the number of interactions among the

trackers during each sampling interval [k, k + 1] used to fuse the information about the

estimated target’s state. The larger the number L, the faster will the convergence of the

DEKF be; however, more communications will be required among the trackers [Battistelli

and Chisci, 2016].

6.5.3 Cooperative target pursuit

We now propose controllers for each tracker i to solve the problem of cooperative control

for target pursuit stated in Problem 6.2. Inspired by the work in the field of consensus of

multi agent systems [Ren and Beard, 2008], at the cooperative control level, a distributed

control law for the correction speed v
[i]
c in a form of consensus protocol is given as

v[i]
c = −kc

∑
j∈N [i]

in

(γ[i] − γ[j]), (6.44)
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where kc > 0 is a coupling gain. With this correction speed, the total desired speed that

for γ[i] to track is given by

ω
[i]
d = ω̄ + v[i]

c , (6.45)

Algorithm 6.2 Distributed EKF for tracker i

1: procedure Initialization
2: At k = 0, initialize x̂

[i]
1|0, P

[i]
1|0

3: Ω
[i]
1|0 = [P

[i]
1|0]−1, z

[i]
1|0 = [P

[i]
1|0]−1x̂

[i]
1|0

4: return x̂
[i]
1|0,Ω

[i]
1|0, z

[i]
1|0

5: At each discrete time k, repeat the following procedures:
6: procedure Local correction
7: if obtain a new range then

8: C
[i]
k =

∂d
[i]
k

∂x
(x̂

[i]
k|k−1)

9: ỹ
[i]
k = y

[i]
k − d

[i]
k (x̂

[i]
k|k−1) + C

[i]
k x̂

[i]
k|k−1

z̃
[i]
k = z

[i]
k|k−1 + (C

[i]
k )TV [i]ỹ

[i]
k

Ω̃
[i]
k = Ω

[i]
k|k−1 + (C

[i]
k )TV [i]C

[i]
k

(6.40)

10: else set z̃
[i]
k = z

[i]
k|k−1, Ω̃

[i]
k = Ω

[i]
k|k−1.

11: procedure Communication
12: Transmit to its out-neighbors a message M[i]

e (k), defined as

M[i]
e (k) , {z̃[i]

k , Ω̃
[i]
k } (6.41)

13: procedure Fusion (Consensus Estimation)

z
[i]
k|k = π[i,i]z̃

[i]
k +

∑
j∈N [i]

in

π[i,j]z̃
[j]
k

Ω
[i]
k|k = π[i,i]Ω̃

[i]
k +

∑
j∈N [i]

in

π[i,j]Ω̃
[j]
k

(6.42)

return z
[i]
k|k,Ω

[i]
k|k, x̂

[i]
k|k = [Ω

[i]
k|k]
−1z

[i]
k|k

14: procedure Prediction

x̂
[i]
k+1|k = F x̂

[i]
k|k

Ω
[i]
k+1|k = W −WF (Ω

[i]
k|k + FTWF )−1FTW

(6.43)

return x̂
[i]
k+1|k,Ω

[i]
k+1|k, z

[i]
k+1|k = Ω

[i]
k+1|kx̂

[i]
k+1|k
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where as explained before, ω̄ is the nominal desired speed for all γ[i]; i ∈ V . Similarly to

(6.19), define also

e[i]
γ = γ̇[i] − ω[i]

d (6.46)

as the speed tracking error for the evolution of γ[i] for each tracker i; i ∈ V . Similar to

(6.26), let

ê[i]
p = RT(η[i])

(
p[i] − r(γ[i])− q̂[i]

)
− ε. (6.47)

To track the trajectory we adopt the tracking controllers given by (6.27) and (6.28) for

each tracker i; i ∈ V as follows.

Tracking Controller - Type I

u[i] = k(x̂[i]) (6.48a)

γ̇[i] = ω
[i]
d . (6.48b)

Tracking Controller - Type II

u[i] = k(x̂[i]) (6.49a)

γ̈[i] = −kγe[i]
γ + (ê[i]

p )TRT(η[i])r′(γ[i]) + v̇[i]
c , (6.49b)

where in (6.48) and (6.49)

k(x̂[i]) = ∆̄
(
RT(η[i])

(
r′(γ[i])ω

[i]
d + v̂[i]

)
−Kpê

[i]
p

)
(6.50)

and in (6.49)

v̇[i]
c = −kc

∑
j∈N [i]

in

(γ̇[i] − γ̇[j]), (6.51)

with ω
[i]
d , e

[i]
γ and ê

[i]
p are given by (6.45)–(6.47).

Remark 6.8. Both types of controllers require the trackers to exchange the coordination

state γ[i]; i ∈ V to compute the correction speed v
[i]
c . However, Tracking Controller-Type

II in (6.49) also requires the trackers to exchange γ̇[i]; i ∈ V (in order to compute v̇
[i]
c ) .
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6.5.4 Stability analysis of the complete DEC system

We now show that the proposed DEC system designed in Sections 6.5.2 and 6.5.3 solves

the cooperative target localization and pursuit problem while verifying a robust stability

property. To this end, we analyze the convergence of estimation, coordination, and pursuit

errors of the complete DEC system, defined as follows.

Estimation error:

Let

x̃[i] , x̂[i] − x. (6.52)

be the estimation error of the target’s state estimated by tracker i; i ∈ V . Collectively,

the total estimation error of the complete DEC system is defined as

x̃ , col
(
x̃[1], ..., x̃[N ]

)
∈ RnN . (6.53)

Coordination error:

Recall that with the proposed methodology, the path parameters γ[i] represent the coor-

dination states of the trackers. Let

ξi = γ[i] −
N∑
j=1

rjγ
[j] (6.54)

be the coordination error among the trackers, where ri is the ith component of the left

eigenvector of the Laplacian matrix of the underlying communication graph. Recall from

Lemma 2.1 that this eigenvector is denoted by r ∈ RN . Note also that if the graph is

balanced, then r = 1/N . In this case, ξi measures the disagreement between the coordi-

nation state γ[i] and the average of all coordination states. Let also ξ , [ξT
1 , ..., ξ

T
N ]T ∈ RN

be the coordination error vector that captures the disagreement among the coordination

states. From (6.54), ξ can be rewritten as

ξ = Wγ, (6.55)
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where γ , [γ[1], ..., γ[N ]]T ∈ RN and

W , IN − 1rT. (6.56)

With the above definition, it is clear that all coordination states are synchronized, that

is, γ[1] = γ[2] = ... = γ[N ] if and only if ξ = 0. Therefore, to analyze consensus of the

coordination states, we analyze the convergence of the coordination error ξ to zero. The

dynamics of ξ are given by

ξ̇ = W γ̇
(6.44)−(6.46)

= W (1ω̄ +−kcLγ + eγ)

= −kcLξ +Weγ

, f1(ξ, e),

(6.57)

where eγ , [e
[1]
γ , ..., e

[N ]
γ ]T ∈ RN . Above we used Lemma 2.1 for the last equality, that is,

because rT1 = 1 and rTL = 0; therefore, W1 = 0 and WL = LW .

Pursuit error:

Similarly to (6.18), let

e[i]
p = RT(η[i])(p[i] − r(γ[i])− q)− ε (6.58)

be the position error between tracker i and the vicinity of the target. From (6.47) and

(6.58) it follows that

ê[i]
p = e[i]

p −RT(η[i])q̃[i], (6.59)

where q̃[i] , q̂[i] − q[i] is the the estimation error of the the target’s position, estimated

by tracker i. The dynamics of the error can be obtained similarly to (6.20) as

ė[i]
p = −S(ω[i])e[i]

p + ∆u[i] −RT(η[i])
(
r′(γ[i])γ̇[i] + v

)
Note that the control law for u[i] is identical for two types of tracking controllers (6.48) and

(6.49). Thus, making u[i] = k(x̂[i]), where k(x̂[i]) given by (6.50) and using the relation
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6.5 SLAP with multiple trackers

in (6.46) in the above equation, we obtain

ė[i]
p =− S(ω[i])e[i]

p +RT(η[i])
(
ṽ[i] − r′(γ[i])e[i]

γ

)
−Kp

(
e[i]

p −RT(η[i])q̃[i]
)
,

(6.60)

where ṽ[i] , v̂[i]−v[i] is the estimation error of the target’s velocity, estimated by tracker

i.

We now derive the dynamics for e
[i]
γ defined by (6.46). For the Tracking-Controller Type I

given by (6.48), e
[i]
γ = 0, hence ė

[i]
γ (t) = 0 for all t and i ∈ V . For the Tracking-Controller

Type II, the dynamics of e
[i]
γ are given by

ė[i]
γ

(6.45),(6.46)
= γ̈[i] − v̇[i]

c

Substituting γ̈[i] in (6.49b) in the above equation yields

ė[i]
γ = −kγe[i]

γ + êT
pR

T(η)r′(γ). (6.61)

Let also e[i] = [(e
[i]
p )T, e

[i]
γ ]T be the tracking error vector of tracker i. Collectively, the

pursuit error of the complete DEC system is defined as

e , col(e[1], ..., e[N ]). (6.62)

From (6.60) and (6.61), the dynamics of the total pursuit error can be rewritten in the

general form

ė = f2(e, x̃, ξ). (6.63)

We now study the stability of the complete DEC system by analyzing the inter-connected

system consisting of the systems (6.57) and (6.63), see Fig.6.6. First, we analyze the

stability of each sub-system as follows

Lemma 6.2 (stability of the coordination system). Consider the coordination error sys-

tem described by (6.57). Assume further that the communication digraph is strongly con-

nected. Then, the coordination error system is ISS with respect to the state ξ and the

input e.

Proof: See section 6.10.3.

206



6.5 SLAP with multiple trackers

Lemma 6.3 (stability of the pursuit error system). Consider the complete pursuit error

system described by (6.63). Then, the complete tracking error system is ISS with respect

to the state e and the input x̃, where x̃ is the total estimation error of the target state

given by (6.53) .

Proof. See section 6.10.4.

Remark 6.9. Lemma 6.3 implies that with tracking controllers given in (6.48) and

(6.49), the tracking error system is independent of the correction speed v
[i]
c .

Theorem 6.2. Consider the closed-loop complete DEC system composed by the coor-

dination error system (6.57) and the pursuit error system (6.63). Let assumptions in

Lemma 6.2 and Lemma 6.3 hold. Then, the complete DEC system is ISS respect to the

state µ , [ξT, eT]T and the input x̃, where x̃ is the total estimation error of the target

state given by (6.53).

Theorem 6.2 follows immediately from Lemma 6.2 and Lemma 6.3 and the stability of

cascaded ISS systems [Sontag, 2008]. The ISS property of the close-looped DEC system

implies that the pursuit and coordination error (µ) depend only on the estimation error

of the target’ state (x̃) generated by the DEKF and is robust against this error in the

sense that as long as x̃ is bounded, then µ is bounded. Furthermore, if x̃ converges zero

then µ converges to zero as well. According to [Battistelli and Chisci, 2016], provided

that the digraph induced by the tracker’s network is strongly connected and the initial

estimates of the target’s state are sufficiently close to the true target, then x̃ is guaranteed

to be bounded and asymptotically converge to a ball whose size depends on the size of

the covariances of range measurement and process noises. Note that this requirement on

the connectivity of network is satisfied with Lemma 6.2, whereas the requirement on the

initial estimates is standard with EKF.

Figure 6.6: The closed-loop DEC system.
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6.6 Simulation examples

In this section, we will present simulation results that illustrate the performance of the

DEC in pursuing and localizing a target. We consider two scenarios: the first with

one tracker (N = 1) and the second with three trackers (N = 3). With N = 3, the

communication topology adopted is depicted in Fig.6.7, which shows the indexes of the

trackers and the directional communication links among them (represented by arrows).

The simulation parameters for the 2-D and 3-D cases are given in Table 6.1 and Table 6.2,

respectively. In all simulations the sampling interval for range measurements is 2 seconds

and the Tracking Controller-Type II was used.

12

3

Figure 6.7: The communication network of three trackers. Arrows indicate directions of the
information flow, thus inducing a directed graph.

6.6.1 2-D cases

The performance of the DEC strategy for localizing and pursuing the target in 2-D using

one tracker and three trackers are plotted in Fig.6.8 and Fig.6.9. Fig.6.8 (a) shows that

in both scenarios the trackers converge to and stay in the vicinity of the target, and

encircle the latter. The figure also indicates that the target’s positions estimated by

the trackers converge to a small neighborhood of the true target’s position. This can be

verified by observing Fig.6.9 where it is evident that the pursuit errors and the localization

errors converge nearly to zero, implying that both the pursuit and localization tasks are

fulfilled.

Fig.6.9 also indicates that with three trackers, the convergence of the pursuit and the

localization errors is faster than that obtained using only Tracker 1. Fig.6.8(b) also

shows that the uncertainty regions of the target’ position estimated by the three trackers

(computed from the covariance matrices P [i] and represented by the ellipsoids) converge

to almost the same size, which is smaller than the size of the uncertainty region of the

target’ position estimated using only Tracker 1.
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a) One tracker (N = 1)

b) Three trackers (N = 3).

Figure 6.8: 2-D cases: The filled ellipsoids represent the uncertainties (covariances) of the tar-
get’s position estimated by the trackers at the beginning and end of the simulation.

Trajectories. p[i]: trackers, p
[i]
d : desired path, q: target, q̂[i]: estimated target.

Fig.6.10 shows the performance of the coordination system. It is visible that all the path

parameters reach consensus and evolve with the common desired speed ω̄. This implies

that the trackers converge to and maintain in the desired formation that allows them to

acquire maximal range information to estimate the target’s state.
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a) One tracker (N = 1).
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b) There trackers (N = 3)

Figure 6.9: 2-D cases: Pursuit errors (
∥∥e[i]

∥∥) and localization errors (
∥∥x̃[i]

∥∥), i = 1, 2, 3.
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Figure 6.10: 2-D cases. Coordination performance in case with three trackers (N = 3).

6.6.2 3-D cases

The performance of the DEC strategy for 3-D cases is illustrated in Fig.6.11 and Fig.6.12.

The figures show that the pursuit and localization errors are bounded and converge nearly

210



6.6 Simulation examples

to zero in both scenarios. However, Fig.6.12 indicates that the errors converge faster,

and asymptotically are smaller with three trackers. Fig.6.13 shows the performance of

the coordination system in the case of there trackers. It is visible that all the path

parameters reach consensus and evolve with the common desired speed ω̄. This implies

that the coordination task is fulfilled as well.

a) One tracker (N = 1).

b) Three trackers (N = 3).

Figure 6.11: 3-D cases: The filled ellipsoids represent the uncertainties (covariances) of the
target’s position estimated by the trackers at the beginning and the end of the
simulation. Trajectories. p[i]: trackers, q: target, q̂[i]: estimated target.
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a) One tracker (N = 1).
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Figure 6.12: 3-D cases: Pursuit errors (
∥∥e[i]

∥∥) and localization errors (
∥∥x̃[i]

∥∥), i = 1, 2, 3.
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Figure 6.13: 3-D cases. Coordination performance in case with three trackers (N = 3).
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6.7 DEC with event-triggered communications

Recall that in order to implement the DEC strategy proposed in the previous section, the

trackers are required to exchange the following types of information.

i) The first is associated with the DEKF described in Algorithm 6.2 that includes

messages M[i]
e (k) given by (6.41) exchange periodically at every t = kTs.

ii) The second is associated with the cooperative controller that requires the exchange

of messages M[i]
c (t) , {γ[i](t)}. Notice that if the Tracking Controller Type-2 is

used thenM[i]
c also includes γ̇[i] (see (6.51)). For clarity of exposition, in the set-up

exposed before we assume that these messages are exchanged continuously in time.

In practice, however, continuous communications are virtually impossible via wireless

communication networks. A standard way is to transmit M[i]
c periodically and set the

communication period as small as possible in order to achieve a performance comparable to

that obtained using continuous communications. To make it simpler for a practical imple-

mentation, both messagesM[i]
e andM[i]

c can be included in one package and transmitted

at the same time, at every Ts. In this section, we propose a far more viable approach than

continuous or periodic communications, that exploits the techniques of event-triggered

communication (ETC) in [Battistelli et al., 2019,Hung et al., 2019]. Using this setup, the

trackers exchange information when found necessary, without noticeable degradation of

the performance achieved with the DEC developed in the previous section.

6.7.1 DEKF with event-triggered communications

We start by designing an ETC mechanism to decide when a generic tracker i must transmit

the latest density about the target (stored in messageM[i]
e , see (6.41)) to its out-neighbors.

Recall that in order to implement the DEKF each tracker i must access periodically to

the latest local densities of the target computed by its in-neighbors (see Fusion step in

Algorithm 6.2). The underlying idea behind the ETC mechanism is that if the tracker

i can predict/estimate these densities well then there is no need for its in-neighbors to

transmit the densities periodically. To this end, at each tracker i we define

p̄[j](xk|x̄[j]
k−1, P̄

[j]
k−1) ∼ N (x̄

[j]
k , P̄

[j]
k ), (6.64)

as the estimate of p[j] - the density of the target computed by tracker j, j ∈ N [i]
in . The

density p̄[j] can be computed by propagating from the latest density about target received
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6.7 DEC with event-triggered communications

from tracker j through the target model. Formally, let {k[j]
l }l∈N (to be determined by

the ETC mechanism) denote the sequence of discrete time instants at which tracker j

broadcasts target density p[j] (stored in message M[j]
e ). The density p̄[j] is computed as

follows.

At k = k
[j]

l+ :

x̄
[j]
k = Ω̃

[j]
k z̃

[j]
k , P̄

[j]
k = [Ω̃

[j]
k ]−1, (6.65)

where the pair (z̃
[i]
k , Ω̃

[i]
k ) parameterizes p[j] - the latest density of the target computed by

the tracker j (see how to compute this pair in (6.40)). In intervals [k
[j]
l , k

[j]
l+1), l ∈ N, the

density p̄[j] propagates in an open loop manner through target’s model, given by

x̄
[j]
k+1 = F x̄

[j]
k

P̄
[j]
k+1 = FP̄

[j]
k F

T +Q.
(6.66)

The above equations imply that whenever tracker i received the latest information about

the target from tracker j, j ∈ N [i]
in , the density p̄[j] will be updated with this latest infor-

mation using (6.65). See an illustration of the evolution of the estimated density p̄[j] and

the correct density p[j] in Fig.6.14.

Figure 6.14: Illustration of the estimated density p̄[j](red) and the latest correct density p[j]

(gray). The estimated density is corrected (reset to the correct density) at every

k
[j]
l , l ∈ N.

In order to monitor “how well” the tracker i predict/estimate the density computed by

the tracker j the tracker j builds run density identical to p̄[j] that was built at tracker i

with (6.65) and (6.66). Thus, the discrepancy between the estimated density p̄[j] and the
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6.7 DEC with event-triggered communications

correct density p[j] at tracker i can be monitored by the tracker j as well. To quantify this

discrepancy we adopt a measure, call the Kullback-Leibler Divergence (KLD), defined as

KLD[j]
k (p[j]|| p̄[j]) =

1

2
trace

(
[P̄

[j]
k ]−1P̃

[j]
k − In

)
+ ...

1

2

∥∥∥x̄[j]
k − x̃

[j]
k

∥∥∥
[P̄

[j]
k ]−1

+
1

2
log

(
det(P̄

[j]
k )

det(P̃
[j]
k )

)
,

(6.67)

where P̃
[j]
k = [Ω̃

[j]
k ]−1 and x̃

[j]
k = [Ω̃

[j]
k ]−1z̃

[j]
k ; and n is the dimension of x̄

[j]
k which is identical

to the dimension of the target’s state [Battistelli et al., 2019]. To save communications,

the tracker j keeps checking KLD[j]
k and only transmits p[j] whenever this divergence

exceeds a given value. Formally, the tracker j will transmit message M[j]
e that stores p[j]

whenever KLD[j]
k ≥ g[j](k) where g[j] : k → R≥0 is a positive threshold function that

is designed to bound the difference between the two densities. Formally, the sequence

{k[j]
l }l∈N is specified by

k
[j]
l+1 = inf{k > k

[j]
l : KLD[j]

k ≥ g[j](k)} (6.68)

for all l ∈ N and i = 1, ..., N . In summary, with the ETC mechanism presented above, the

DEKF with event-triggered communication for a generic tracker i can be implemented

with Algorithm 6.3. Note that the fusion law in this algorithm is computed with the

estimated densities rather than the true densities as in Algorithm 6.2.

6.7.2 Cooperative pursuit with event-triggered communications

In this section, we propose an ETC mechanism to decide when a generic tracker i will

transmit message M[i]
c for the coordination control purposes. The ETC mechanism de-

scribed in this section is in line with the work in [Hung et al., 2019,Hung et al., 2020b] and

is presented next. Recall that to compute the correction speed v
[i]
c given in (6.44), each

tracker i needs to assess the variables γ[j]; j ∈ N [i]
in continuously. In order to overcome this

unpractical requirement, tracker i will estimate these variables and use their estimates in

(6.44) rather than the true ones. Let γ̂
[j]
i be the estimate of γ[j], estimated by tracker i.

In the ETC mechanism, the cooperative control law for v
[i]
c is given by

v[i]
c = −kc

∑
j∈N [i]

in

(γ[i] − γ̂[j]
i ), (6.70)
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Algorithm 6.3 DEKF-ETC for tracker i

1:
...

2: Similar to that of Algorithm 6.2

3:
...

4: procedure Communication
5: if KLD[i]

k (p[i]|| p̄[i]) ≥ g[i](k) then

6: Broadcast message M[i]
e (k) given by (6.41).

7: Update x̄
[i]
k , P̄

[i]
k using (6.65)

End
8: procedure Fusion (Consensus)

z
[i]
k|k = π[i,i]z̃

[i]
k +

∑
j∈N [i]

in

π[i,j]z̄
[j]
k

Ω
[i]
k|k = π[i,i]Ω̃

[i]
k +

∑
j∈N [i]

in

π[i,j]Ω̄
[j]
k

(6.69)

return z
[i]
k|k,Ω

[i]
k|k, x̂

[i]
k|k = [Ω

[i]
k|k]
−1z

[i]
k|k

9:
...

10: Similar to that of Algorithm 6.2

11:
...

12: procedure Propagate density p̄[i]

13: Compute {x̄[i]
k+1, P̄

[i]
k+1} using (6.66)

14: return x̄
[i]
k+1, P̄

[i]
k+1

where kc > 0. To analyze the ETC mechanism, (6.70) can be rewritten as

v[i]
c = −kc

∑
j∈N [i]

in

(γ[i] − γ[j] + γ̃[j]), (6.71)

where

γ̃[j] , γ[j] − γ̂[j]
i ; j ∈ N [i]

in (6.72)

is the estimation error of γ[j] computed at tracker i. It can be seen that compared with

the control law for continuous communications in (6.44), v
[i]
c in (6.70) has contributions

from the above error. The underlying idea in the proposed ETC mechanism is that if this

error can be enforced to be bounded then, as we will show later, the coordination error

ξ between the trackers will also be bounded. To make γ̃[j]; j ∈ N [i]
in , i ∈ V bounded, we

define at each tracker j the variable γ̂[j]; j ∈ V as a “replica” of γ̂
[j]
i ; i ∈ N [i]

out and keep
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them synchronized. To this end, their models are proposed as follows.

Let {t[i]n };n ∈ N be the sequence of time instants at which tracker i sends its current value

of γ[i](t
[i]
n );n ∈ N to its out-neighbors. Note that this sequence will be specified by the

ETC mechanism. For T [i]
n , [t

[i]
n , t

[i]
n+1):

˙̂γ[i](t) = ω̄, (6.73a)

γ̂[i](t[i]n ) = γ[i](t[i]n ). (6.73b)

for all i ∈ N . Similarly, let {t[ji]n };n ∈ N be the sequence of time instants at which tracker

j; j ∈ N [i]
out receives γ[i](t

[i]
n ).

For T [ji]
n , [t

[ji]
n , t

[ji]
n+1):

˙̂γ
[i]
j (t) = ω̄, (6.74a)

γ̂
[i]
j (t[ji]n ) = γ[i](t[i]n ); i ∈ V . (6.74b)

With the above mechanism and provided there are no communication delays, i.e. t
[i]
n = t

[ji]
n

for all n and i, then from (6.73) and (6.74) we conclude that γ̂[i](t) = γ̂
[i]
j (t) for all t, i.e. γ̂[i]

is a copy γ̂
[i]
j . Thus, from (6.72), the estimation error can be expressed as γ̃[i] = γ[i] − γ̂[i]

for all i ∈ V . To ensure that the estimation error γ[i]; i ∈ V bounded, we allow tracker

i to transmit γ[i] whenever this error hits a designed bounded threshold that, in general,

can be parameterized by a function of time that we call h[i](t). Formally, The sequence

{t[i]n } is specified by

t
[i]
n+1 = inf{t > t[i]n : |γ̃[i](t)| ≥ h[i](t)}. (6.75)

With the ETC mechanism, whenever the tracker makes a transmission γ̂[i] will be imme-

diately reset to γ[i] (see (6.73b)), it is guaranteed that

|γ̃[i](t)| ≤ h[i](t) (6.76)

for all t and i ∈ V . Later, we will show that thank to (6.76) the coordination error among

the trackers will always be bounded and the bound depends explicitly on h[i]; i ∈ V-

the user designed functions to trade off performance of trackers’ coordination and the

cost of communications. In summary, the proposed ETC mechanism for the coordination

purposes can be implemented using Algorithm 6.4.
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Algorithm 6.4 Coordination with ETC mechanism for tracker i

1: At every time t, agent i implements the following procedure:
2: procedure coordination and communication
3: if |γ̃[i](t)| ≥ h[i](t) then
4: Broadcast γ[i](t);
5: Reset γ̂[i] using (6.73b);

6: if Receive γ[j] from agent j ∈ N [i]
in then

7: Reset γ̂
[i]
j using (6.74b);

8: Run the estimators (6.73) and (6.74);

9: Compute v
[i]
c using (6.70);

10: return v
[i]
c

6.7.3 Stability analysis of the complete DEC System with the

event-triggered communication mechanisms

In order to draw a conclusion for the stability of the complete DEC system under the

ETC mechanism, similar to Section 6.5.4 we examine the stability of sub-systems.

Coordination error system:

Firstly, we study the stability of the coordination system that is presented next. From

(6.45) and (6.46) we obtain

γ̇[i] = ω̄ + e[i]
γ + v[i]

c

(6.71)
= ω̄ + e[i]

γ − kc
∑
j∈N [i]

in

(γ[i] − γ[j] + γ̃[j]).

Recall that γ = [γ[1], ..., γ[N ]]T, thus

γ̇ = 1ω + eγ − kcLγ − kcAγ̃, (6.77)

where γ̃ , [γ̃[1], ..., γ̃[N ]]T and A is the adjacency matrix of the digraph. Now we consider

again the coordination error vector ξ defined by (6.55). It’s dynamics in the closed-loop

system with ETC mechanism are given by

ξ̇ = W γ̇
(6.77)
= W (1ω̄ +−kcLγ + eγ − kcAγ̃)

= −kcLξ +Weγ − kcWAγ̃.
(6.78)
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With the ETC mechanism described above, we obtain the following result.

Lemma 6.4 (stability of coordination system). Consider the coordination error system

under the ETC mechanism described by (6.78). Assume further that the underlying com-

munication graph is strongly connected. Then, the coordination error system is ISS with

respect to the state ξ and the inputs e and h , [h[1], ..., h[N ]]T.

Proof: See section 6.10.5.

Remark 6.10. Lemma 6.2 is a special case of Lemma 6.4 when triggering threshold

functions h[i](t) = 0 for all t and i ∈ V. In this case, h = 0; as a consequence, the

resulting coordination error system is ISS respect to only the input e. From a communi-

cation standpoint, since the triggering thresholds are zero, communications are triggered

continuously.

Pursuit error system:

Notice that with the ETC mechanism, the tracking controllers given by (6.48) and (6.49)

use the correction speed v
[i]
c in (6.70), instead of (6.44). Therefore, for Tracking Controller-

Type II given by (6.49), the v̇
[i]
c in (6.51) is replaced by

v̇[i]
c = −kc

∑
j∈N [i]

in

(γ̇[i] − ω̄), (6.79)

which is obtained from (6.70) and (6.74a). As showed in Section 6.5.4 that the pursuit

error system is independent with the correction speed v
[i]
c . Thus, the complete pursuit

error system given by (6.63) holds under the ETC mechanism, which leads to the following

result.

Lemma 6.5 (Pursuit error system with ETC mechanism). Consider the complete pursuit

error system (6.63) resulted by applying the tracking controllers Type I or Type II given by

(6.48) and (6.49), respectively with v
[i]
c given by (6.70) and v̇

[i]
c is given by (6.79). Then,

the complete pursuit error system is ISS with respect to the state e and the inputs x̃ and

ζ, where x̃ is the total estimation error of the target’s state given by (6.53).

Proof: The proof Lemma 6.5 is similar to that of Lemma 6.3.

As a consequence, we obtain the following result for the stability of the whole DEC system.
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Theorem 6.3. Consider the closed-loop complete DEC system composed by the coordi-

nation error system and the pursuit error system stated in Lemma 6.4 and Lemma 6.5.

Then, the complete DEC system is ISS respect to the state µ , [ξT, eT]T and the inputs

x̃ and h, where x̃ is the total estimation error of the target state given by (6.53).

Theorem 6.3 follows immediately from Lemma 6.4 and Lemma 6.5 and the stability

of cascaded ISS systems [Sontag, 2008]. It can be seen that Theorem 6.2 is a special case

of Theorem 6.3 where the h = 0; which, from a communication standpoint, it triggers

trackers communicate with their neighbors continuously to exchange messages M[i]
c .

6.8 Simulation examples with ETC mechanisms

In this section we present simulation results illustrating the performance of the ETC

mechanisms proposed in the previous section. In this simulation, three trackers are used

to localize and pursue a target, in both the 2D and 3D cases, where the communications

among them are driven by the ETC mechanisms. The trackers’ communication network

is set as in Fig.6.7, while all simulation parameters are identical to that used in Section

6.6, i.e. adopted from Table 6.1 and Table 6.2. Recall that in Section 6.6 communications

among the trackers were done in a continuous manner for cooperative pursuit task and in

a periodic manner for cooperative localization task. The threshold functions for the ETC

mechanism described in Algorithm 6.3 is chosen as

g[i](k) = 15e−0.05k + 3, (6.80)

while the threshold function for the ETC mechanism described in Algorithm 6.4 is set as

h[i](t) = 2e−0.05t + 0.1 (6.81)

for all i = 1, 2, 3.

6.8.1 2-D example

Trackers and target’s trajectories in the 2-D example are depicted in Fig.6.15. It is clearly

shown in Fig.6.15(a) that the estimates of target’s position converge to the target’s tra-

jectory, and all trackers converge to and encircle the target. This is in agreement with
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the results plotted in Fig.6.15(b), where it shows that all estimation and pursuit errors

converge to neighborhoods of zero.
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Figure 6.15: 2-D example with ETC mechanism: (a) The filled ellipsoids represent the un-
certainties (covariances) of the target’s position estimated by the trackers at the

beginning and end of the simulation. Trajectories. p[i]: trackers, p
[i]
d : desired

path, q: target, q̂[i]: estimated target. (b) Pursuit errors (e[i]) and localization
errors (x̃[i]).

Fig.6.16 shows that the path parameters are synchronized and evolve nearly at the same

speed about the desired speed ω̄. These imply that the trackers are coordinated along

the S-T curves.

Fig.6.17 and Fig.6.18 illustrate communications between the trackers. Fig.6.17(a) shows

time instants at which the trackers broadcast messagesM[i]
c = {γ[i]}, which are associated

with the cooperative pursuit task. It indicates that there are only few communications

between the trackers which, according to Fig.6.17(b), they only happen when each estima-

tion error γ̃[i] hits threshold function h[i]; i = 1, 2, 3. For communications involved in the

cooperative localization task, Fig.6.18 shows time instant at which the trackers broadcast

221



6.8 Simulation examples with ETC mechanisms

messages M[i]
e , which contain the local densities of the target estimated by each tracker.

The figure shows that the trackers only transmit the messages to their neighbors whenever

the Kullback-Leibler Divergence (KLD[i]) hit threshold functions g[i]; i = 1, 2.3.
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Figure 6.16: 2-D example with ETC mechanism. (a) Evolution of the coordination state γ[i].
(b) Speeds of the coordination state γ̇[i], i = 1, 2, 3.
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Figure 6.17: 2-D example with ETC mechanism: Communications for cooperative tracking S-
T curves. (a) Sequences of time instants at which the trackers broadcast messages

M[i]
c = {γ[i]}, i = 1, 2, 3. (b) Evolutions of the estimation errors γ̃[i] and the

threshold functions h[i].
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Figure 6.18: 2-D example with ETC mechanism: Communications for cooperative localization
task (DEKF-ETC). (a) Sequences of discrete time instants at which each the

tracker broadcasts M[i]
e (the local density about the target). (b) Evolutions of

the Kullback-Leibler Divergence (KLD[i]), and the threshold functions g[i]. Recall
that ranges are taken at every k and t = kTs with Ts = 2s in this simulation.
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6.8.2 3-D example
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Figure 6.19: 3-D example with ETC mechanism: (a) The filled ellipsoids represent the un-
certainties (covariances) of the target’s position estimated by the trackers at the

beginning and end of the simulation. Trajectories. p[i]: trackers, p
[i]
d : desired

path, q: target, q̂[i]: estimated target. (b) Pursuit errors (e[i]) and localization
errors (x̃[i]).

The performance of the ETC mechanisms for the 3-D example is shown in Fig.6.19 -

Fig.6.22. Fig.6.19 shows that all trackers converge to the desired S-T curves and estimate

relatively well the trajectory of the target. Fig.6.20 indicates that the coordination states

reach consensus and evolve almost the same speeds that are around the common desired

speed ω. This implies that the trackers are coordinated along the desired S-T curves

and fulfill the cooperative pursuit task. Fig.6.21 shows that in order to achieve the

cooperative pursuit task the trackers only transmit their coordination states when found

necessary, i.e. when the estimation errors (γ̃[i]) exceed designed threshold functions (h[i]).

Similarly, Fig.6.22 indicates that the trackers only transmit their local densities about the
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target when the Kullback-Leibler Divergence ((KLD[i])), and the threshold functions (g[i]).

Compared with the simulation in Section 6.6, it is apparent that the ETC mechanisms

reduce the number of communications among the trackers while they still guarantee an

adequate performance of target localization and pursuit system.
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Figure 6.20: 3-D example with ETC mechanism. (a) Evolution of the coordination states γ[i].
(b) Speeds of the coordination states γ̇[i], i = 1, 2, 3.
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Figure 6.21: 3-D example with ETC mechanism: Communications for cooperative tracking S-
T curves. (a) Sequences of time instants at which the trackers broadcast γ[i], i =
1, 2, 3. (b) Evolutions of the estimation errors γ̃[i] and the threshold functions
h[i].
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Figure 6.22: 3-D example with ETC mechanism: Communications for cooperative localization
task (DEKF-ETC). (a) Sequences of discrete time instants at which the trackers

broadcast M[i]
e (the local density about the target), i = 1, 2, 3. (b) Evolutions of

the Kullback-Leibler Divergence (KLD[i]), and the threshold functions g[i]. Recall
that ranges are taken at every k and t = kTs with Ts = 2s in this simulation.

228



6.9 Conclusions

6.9 Conclusions

We proposed an integrated motion planning, control, and estimation framework to solve

the problem of range-based simultaneous target localization and pursuit using one or

multiple autonomous trackers. At the motion planning level, optimal tracker-target ge-

ometrical formations for target localization purposes were derived that led naturally to

the concept of S-T curves with a hybrid temporal-spatial parameterization that serve as

references for the desired motion of the trackers. This was followed by the derivation

of two robust tracking controllers for S-T curve tracking. In the case of multiple track-

ers, an efficient distributed cooperative estimation and control strategy was proposed to

deal with the constraints imposed by the inter-tracker communication network topology.

The results of extensive simulations showed the robustness and efficacy of the proposed

method. Stability analysis showed that the performance of the complete DEC system de-

pends only on the convergence the EKF (DEKF for the case of multiple trackers) which,

in practice, requires proper initialization of the estimated target’s state and covariances.

For the purpose of reducing communications among the vehicles, we then proposed ETC

mechanisms for both cooperative estimation and cooperative control parts. With the

ETC mechanisms, the vehicles only need to communicate with their neighbor when they

found necessary, making the proposed distributed control and estimation strategy more

efficient and useful for practical application. Future work aims at extending the proposed

method to the case of multiple targets, with the main focus on multiple tracker motion

planning.

6.10 Proofs

6.10.1 Proof of Lemma 6.1

We first prove the result for the controller given by (6.23). Clearly, with (6.23), eγ(t) = 0

for all t. Consider the Lyapunov function candidate V1 = 1
2
‖ep‖2, yielding V̇1 = epėp.

Substituting (6.23) and (6.20) in V̇1, and noting that eT
pS(ω)ep = 0 for all ep and ω, we

obtain V̇1 = −eT
pKpep ≤ −λ2(Kp)‖ep‖2 for all ep. Thus, we conclude that ep converges

to zero exponentially fast.

We now prove the theorem for the controller given by (6.24). Consider the Lyapunov

function candidate KF

V2(e) = ‖e‖2 =
1

2
‖ep‖2 +

1

2
e2
γ. (6.82)
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Its time derivative is given by V̇2 = eT
p ėp + eγ ėγ. Substituting (6.24) and (6.20) in V̇2

yields V̇2 = −eT
pKpep − kγe2

γ. Let

K = diag(Kp, kz). (6.83)

Then, V̇2 = −eTKe ≤ −λmin(K)‖e‖2 < 0 for all e 6= 0. We conclude that the origin of e

is GES. �

6.10.2 Proof of Theorem 6.1

We only prove the theorem for the controller (6.28). The proof for the controller (6.27)

is easier and can be done similarly. For the sake of clarity, let q̃ and ṽ be the target’s

position and velocity estimation errors, i.e. x̃ = col(q̃, ṽ). From (6.30), it follows that

q̃ = q̂− q, ṽ = v̂ − v. (6.84)

From (6.18) and (6.26), we obtain

êp = ep −RT(η)(q̂− q)
(6.84)
= ep −RT(η)q̃. (6.85)

Further, substituting (6.28) in (6.20) and (6.22) yields

ėp =− S(ω)ep +RT(η) (ṽ − r′(γ)eγ)−Kpêp

ėγ =− kγeγ + êT
pR

T(η)r′(γ).
(6.86)

Consider again the Lyapunov function candidate V2 given by (6.82). Taking the time

derivative of V2, and substituting (6.84)-(6.86) in V̇2, we obtain

V̇2 = eT
p ėp + eγ ėγ

= −eTKe + eT

pR
T(η)ṽ + eT

pKpR
T(η)q̃− eγq̃Tr′(γ)

= −eTKe + eTΦ + eT
pKpR

T(η)q̃,

(6.87)
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where Φ , col
(
RT(η)ṽ,−q̃Tr′(γ)

)
. Furthermore,

‖Φ‖2 = ‖RT(η)ṽ‖2 +
∥∥q̃Tr′(γ)

∥∥2

≤ ‖ṽ‖2 + ‖r′(γ)‖2‖q̃‖2

≤ µ‖x̃‖2,

(6.88)

where µ , maxγ{1, ‖r′(γ)‖2}. Note that in (6.88) we used the fact that multiplying a vec-

tor on the left by a rotation matrix does not change the length of the vector. Furthermore,

eT
pKpR

T(η)q̃ ≤ ‖e‖‖K‖‖x̃‖. Substituting (6.88) in (6.87) yields

V̇2 ≤− λmin(K)‖e‖2 + (
√
µ+ ‖K‖)‖e‖‖x̃‖

≤ − (1− θ)λmin(K)‖e‖2, ∀‖e‖ ≥ (
√
µ+ ‖K‖)‖x̃‖/θ

(6.89)

with any θ ∈ (0, 1). Invoking Theorem 4.19 in [Khalil, 2002], we conclude that the tracking

error system is ISS respect to the state e and the input x̃. This implies that there exist

β ∈ KL and α ∈ K functions such that (6.31) is satisfied. �

6.10.3 Proof of Lemma 6.2

Consider a Lyapunov function candidate, defined as

Vc = ξTRξ/2, (6.90)

where R � 0 is a diagonal matrix defined in Lemma 2.1. The time derivative of the

Lyapunov function is given by

V̇c = ξTRξ̇
(6.57)
= − kcξ

TRLξ + ξTRWeγ.

Because ξ, defined in (6.54), is orthogonal to 1, using Definition 2.1, it follows that

V̇c ≤ −kcrmin‖ξ‖2 + ‖ξ‖‖RW‖‖eγ‖ (6.91)
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where rmin = minNi=1 ri. Because ‖eγ‖ ≤ ‖e‖, we obtain

V̇c ≤− kcrmin‖ξ‖2 + ‖RW‖‖e‖

≤ − (1− θ)kcrmin‖ξ‖2 ∀‖ξ‖ ≥ ‖RW‖
θkcrmin

‖e‖
(6.92)

with any θ ∈ (0, 1). Invoking Theorem 4.19 in [Khalil, 2002], we conclude that the

coordination error system is ISS respect to the state ξ and the input e. �

6.10.4 Proof of Lemma 6.3

We only prove the result for the controller (6.49). The proof for the controller (6.48) is

easier and can be done similarly. To this end, consider the Lyapunov function candidate

Ve, defined as

Ve(e) =
1

2

N∑
i=1

∥∥e[i]
∥∥2

=
1

2

N∑
i=1

∥∥e[i]
p

∥∥2
+ (e[i]

γ )2 (6.93)

Note that with this definition

Ve(e) =
N∑
i=1

V2(e[i]),

where V2 is given by (6.82). Using a computation similar to that in the proof of Theorem

6.1, we obtain

V̇2(e[i]) ≤ −λmin(K)
∥∥e[i]

∥∥2
+ (
√
µ+ ‖K‖)

∥∥e[i]
∥∥∥∥x̃[i]

∥∥ (6.94)

which is inherited from (6.89). Therefore,

V̇e ≤
N∑
i=1

V̇2(e[i]) ≤ −λmin(K)‖e‖2 + (
√
µ+ ‖K‖)‖e‖‖x̃‖,

≤ −λmin(K)(1− θ)‖e‖2, ∀‖e‖ ≥
√
µ+ ‖K‖
θλmin(K)

‖x̃‖

(6.95)

with e , [e[1], ..., e[N ]]T and x̃ = [x̃[1], ..., x̃[N ]]T and θ ∈ (0, 1). Invoking Theorem 4.19

in [Khalil, 2002], we conclude that the complete DEC system is ISS respect to the state

e and the input x̃. �
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6.10.5 Proof of Lemma 6.4

The proof of this lemma is similar to the proof of Lemma 6.2. Consider the Lyapunov

function candidate Vc given by (6.90). Taking its time derivative with ξ̇ given by (6.78)

yields

V̇c ≤ −kcrmin‖ξ‖2 + ‖ξ‖ (‖RW‖‖eγ‖+ kc‖RWA‖‖γ̃‖) (6.96)

Because of (6.76), ‖γ‖ ≤ ‖h‖, thus

V̇c ≤ −kcrmin‖ξ‖2 + ‖ξ‖ (‖RW‖‖eγ‖+ kc‖RWA‖‖h‖) .

It can be seen that the above equation extends (6.91), thus, by proceeding similarly to

that in the proof of Lemma 6.2, we conclude that the coordination system is ISS respect

to the state ξ and the inputs e and h. �

6.10.6 Simulation parameters

Table 6.1: Parameters for simulations in 2-D

Parameters

Target’s trajectory q = [20 sin(0.01t+ π), 0.3t]T m

Range measurement σ = 0.5m

S-T curve ω̄ = 0.05 rad/s

r
[i]
x = r

[i]
y = 30m ∀i = 1, ..., 3

Tracking Controller ε = [-0.5, 0]T, Kp = diag([0.4, 0.2]), kγ = 500

Coordination Controller kc = 0.2

DEKF V [i] = 10 ∀i = 1, ..., 3

Q = 10−3diag(1, 1, 0.1, 0.1)

πi = πj = 0.5 ∀i = 1, ..., 3 and j ∈ N [i]
in

Ts = 2s

233



6.10 Proofs

Table 6.2: Parameters for simulations in 3-D

Parameters

Targets trajectory q = [30 sin(0.01t+ π), 0.1t, -0.5t]T m

Range measurement σ = 0.5m

S-T curve ω̄ = 0.1 rad/s

r
[i]
x = r

[i]
y = 80m, r

[i]
z = 50m ∀i = 1, ..., 3

Tracking Controller ε = [-1, -1, 0]T, Kp = diag([0.2, 0.2, 0.2]),

kγ = 200

Coordination Controller kc = 0.2

DEKF V [i] = σ = 1 ∀i = 1, ..., 3

Q = 10−3diag(1, 1, 1, 0.1, 0.1, 0.1)

πi = πj = 0.5 ∀i = 1, ..., 3 and j ∈ N [i]
in

Ts = 2s
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7.1 Summary

In this thesis, we addressed several problems in the field of cooperative control and

estimation of multi agent systems under communication constraints, motivated by prac-

tical problems involved in the use of networked multiple autonomous vehicles/robots for

scientific and engineering applications. The solutions/algorithms proposed in the thesis

are distributed, whereby each agent (e.g. vehicle) only needs to exchange information

with its neighbors, a subset of agents in the agents’ communication network. Especially,

the thesis addressed stringent communication constraints by developing event-triggered

communication mechanisms for which, in order to achieve cooperative control and esti-

mation tasks, the agents only communicate with their neighbors when found necessary,

making the solutions proposed very efficient for practical implementation. This final chap-

ter summarizes the contributions of the thesis and suggests a number of open problems

that warrant future research work.

7.1 Summary

In Chapter 2 we proposed a distributed control algorithm with an event-triggered commu-

nication mechanism to solve the problem of consensus/synchronization of homogeneous

nonlinear multi agent system. The ETC mechanism was shown to be a useful tool to re-

duce the number of messages exchanged among the agents and to trade off the frequency

of communications among agents against the level of performance achieved in MAS con-

sensus/synchronization.

Chapter 3 addressed the problem of cooperative path following of multiple constrained

autonomous vehicles. In order to tackle this problem we proposed a control strategy

which builds on tools from model predictive control, consensus/synchronization of net-

worked multi agent systems, and the event-triggered communication mechanism proposed

in Chapter 2. We showed that the solution proposed is not only capable of handling the

vehicles’ input constraints but also of reducing communications among the vehicles, mak-

ing it efficient for practical implementation.

The second part of the thesis, presented from Chapter 4 to Chapter 6, addressed the

problem of range-based simultaneous multiple target localization and pursuit. A qualita-

tive method was proposed in Chapter 4 to address the observability problem of a target

for the cases of single and multiple trackers. In this chapter, we proposed a systematic

approach to derive a set of conditions on the trackers’ motion (i.e. either on their inputs

or trajectories) under which the target is observable. Based on those conditions derived,
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useful instructions for trackers’ motion planning were given as well.

Chapter 5 proposed a quantitative approach to the solution of the range-based SLAP

problem, which builds upon a tool from estimation theory, called the Bayesian Fisher

Information Matrix, as a means to quantify the range-information acquired about the

targets’ states. By maximizing the FIM a set of optimal trajectories that the trackers

must track to maximize the range-information was derived, giving intuitive and useful

guidelines for planning the motions of the trackers.

Chapter 6 described a cooperative distributed estimation and control (DEC) strategy to

solve the range-based SLAP problem in the case of a single target. At motion planning

level, the solution proposed inherits the results in Chapter 4 and 5 to plan desired tra-

jectories for the trackers to track. At control level, we derived robust cooperative and

tracking controllers that were proved to have the capability of driving the trackers to

the desired trajectories and also position themselves in an optimal relative geometry for

the purpose of estimating the target’s state. At the estimation level, we developed a

distributed extended Kalman filter (DEKF) for the cooperative estimation of the tar-

get’s state. We then proposed event-triggered communication mechanisms for the DEC

strategy and showed that it is not only capable of reducing communications among the

vehicles, but also guaranteeing an adequate performance achieved with continuous com-

munications.

In what follows, we discuss a number of open problems related with the topics presented

in this thesis that could serve as possible research directions.

7.2 Suggestions for future research

7.2.1 ETC mechanism for synchronization of a broader class of

MAS

In Chapter 2 we developed an event-triggered communication mechanism for the state

consensus/synchronization problem of homogeneous nonlinear MAS where all agents in

the MAS network have identical dynamics, described by model (2.2). In order to achieve

synchronization on the agents’ trajectories we also assumed that the agents’ states are

measurable and can be exchanged among the agents, to be included in the control pro-

tocol. However, in many situations, the agents’ dynamics are different and/or one may

be interested in synchronizing the agents’ outputs which are functions of the agents’
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states, rather than synchronizing the full agents’ states. Such scenarios lead to a more

challenging consensus/synchronization problem, called output synchronization of (hetero-

geneous) multi agent systems, see for example [Li et al., 2010, Scardovi and Sepulchre,

2009, Wieland et al., 2011, Isidori et al., 2014] and the references therein. To be more

precise, let us extend the agents model in (2.2) to a more general form, given as

ẋi = fi(xi,ui),

yi = hi(xi)
(7.1)

for all i = 1, ..., N, where xi ∈ Rni ,ui ∈ Rmi and yi ∈ Rpi respectively represent the

state, input, and output of each agent i and fi ∈ Rni , hi ∈ Rpi are (nonlinear) functions.

Supposing that communications among the agents are supported by an inter-agent com-

munication network, the output synchronization problem is defined as that of finding a

distributed control protocol for ui such that

lim
t→∞

(yi(t)− yj(t)) = 0 ∀i, j = 1, ..., N. (7.2)

Notice that the agents’ model considered in Chapter 2, given by (2.2), is a special case of

(7.1) with fi(xi,ui) = Axi + f(xi, t) + Bui and hi(xi) = xi for all i = 1, ..., N where the

dimensions of A,B, f are identical for all agents.

We believe that developing new event-triggered communication mechanisms for the out-

put synchronization problem of the general MAS (7.1) to reduce communications among

the agents is an interesting and extremely challenging topic for future research. The ETC

mechanism proposed in the thesis may be still useful and can be exploited for future work

because it builds on the intuitive idea that “if an agent can predict well the neighbors’

information (e.g. neighbors’ states) that is necessary to compute a cooperative control

protocol then it is not required to access that information continuously”, thus saving com-

munications among the agents. Exploiting this idea and combining it with existing results

with continuous communications for output synchronization of linear heterogeneous MAS

( [Wieland et al., 2011]) and nonlinear heterogeneous MAS( [Isidori et al., 2014,Zhu et al.,

2016, Chowdhury and Khalil, 2021] could be a good starting point towards tackling the

general output synchronization problem stated above.

Other challenging problems deserving further investigation in the context of event-triggered

communications arise in the context of MAS networks exhibiting time varying topology

and temporary communication losses.
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7.2.2 Distributed solution for range-based cooperative SLAP of

multiple targets

In Chapter 5 we proposed a centralized planning, control, and estimation strategy to

solve the problem of range-based SLAP of multiple targets. This strategy builds upon the

concept of model predictive control, the implementation of which can be summarized in

the following steps: i) first, all trackers transmit their local information (i.e. their states

and ranges to targets) to a central node, ii) this node then estimates the densities of the

targets’ states using a centralized filter (e.g. a centralized EKF), iii) afterwards, based on

the trackers’ states received and the estimated targets’ densities, the central node searches

for optimal trackers’ inputs (e.g. their linear speeds and course rates) in their admissible

input spaces with the objective of maximizing the range-information (embodied in a con-

structed Bayesian FIM) for the estimation of the targets’ states iv) in the final step, the

central node transmits these optimal inputs to the trackers as motion control references.

These steps are repeated at every sampling interval, thus featuring the concept of model

predictive control. Note that the third step requires the central node to solve a nonlin-

ear optimization problem with the main objective of maximizing the determinant of the

Bayesian FIM, subject to trackers’ model and input constraints.

Conceptually, the centralized planing, control, and estimation strategy proposed in Chap-

ter 5 can be considered as an “optimal” approach to the range-based SLAP problem since

it drives the trackers in an “optimal” way to acquire maximal range information for the

estimation of targets’ stare. However, from a practical standpoint, implementing it in a

centralized manner may be inefficient and not scalable. A possible direction to continue

this research is to decentralize this strategy, making it fully distributed so that the track-

ers only need to cooperate with their neighbors to estimate target’s state and to move,

instead of depending on the central node. However, any decentralization strategy must

be taken at two levels i) the first involves decentralization of the targets’ state estima-

tion task and ii) the second is associated with decentralization of planning and control

of the trackers. We believe that the first was already solved with the distributed EKF

proposed in Chapter 6, and thus the main challenge comes at the planing and control

level. Decentralizing the control and planing task will certainly lead to an interesting but

challenging problem in the context of distributed model predictive control (DMPC), or

in a broader field, namely, distributed optimization. Recent work and surveys on fast

distributed MPC [Van Parys, 2018, Negenborn and Maestre, 2014] and distributed opti-

mization [YAN, 2019] may provide useful hints to tackle this problem.
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7.2 Suggestions for future research

Recall that in Chapter 6 we proposed an efficient cooperative distributed control, esti-

mation strategy to the cooperative range-based SLAP problem with a single target. The

solution built on preliminary results regarding the types of optimal trajectories (obtained

in Chapter 5) that the trackers must track to acquire maximal range-information for the

estimation of the target’s state. It seems plausible to extend this idea to the case of SLAP

of multiple targets. However, a challenge arises from the requirement to plan optimal tra-

jectories for the trackers to ensure that the range information acquired along the planned

trajectories is maximal for multiple target estimation purposes. This certainly deserves

further research effort.
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A
Background materials

This appendix lists some important results related to stability of nonlinear systems and

matrix calculus that were used in the thesis.

A.1 Input-to-state stability

Consider the system.

ẋ = f(t,x,u) (A.1)

where: f : [0,∞)×Rn ×Rm → Rn is piecewise continuous in t and locally Lipschitz in x

and u. The input u(t) is piecewise continuous, bounded function of t for all t ≥ 0.

Definition A.1 (Definition 4.7 in [Khalil, 2002]). The system is said to be input-to-state

(ISS) stable if there exists β ∈ KL and γ ∈ K such that for initial condition x(t0) and

253



A.2 Stability of cascaded systems

any bounded input u(t) the solution exists for all t ≥ 0 satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0) + γ( sup
t0≤τ≤t

‖u(τ)‖) (A.2)

Theorem A.1 (Theorem 4.19 in [Khalil, 2002]). Let V : [0,∞) × Rn → R be a C1

function such that

α1(‖x‖) ≤ V (t,x) ≤ α2(‖x‖)

∂V

∂t
+
∂V

∂x
f(t,x,u) ≤ −W (x), ∀‖x‖ ≥ ρ(‖u‖) > 0

∀(t,x,u) ∈ [0,∞)×Rn ×Rm. Functions α1, α2 ∈ K∞, ρ ∈ K,W (x) > 0 and W (x) ∈ C0.

Then the system A.1 is ISS with γ = α−1 ◦ α2 ◦ ρ, and V is called as an ISS-Lyapunov

function.

A.2 Stability of cascaded systems

Consider a cascaded systems
Σ1 : ẋ1 =f1(x1,u)

Σ2 : ẋ2 =f2(x2,x1)
(A.3)

Theorem A.2 (Stability of cascaded systems [Sontag, 2008]). Consider the cascaded

system described by (A.3). Suppose that subsystem Σ1 is ISS respect to the state x1 and

the input u, and the subsystem Σ2 is ISS respect to the state x2 and the input x1. Then,

the cascaded system is ISS respect to the state [x1,x2]T and the input u.

A.3 Matrix calculus

Lemma A.1 (Rotation Matrix Differential Equation, Theorem 2.2 in [Fossen, 2011]). Let

RB
A ∈ SO(n)1(n = 2, 3) be the rotation matrix from frame {A} to frame {B}. Then,

ṘB
A = RB

AS(ωAA/B), (A.4)

1A special orthogonal group in dimension n, defined as SO(n) = {R ∈ Rn×n : RRT = RTR =
In,detR = 1}
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A.3 Matrix calculus

where S(ωAA/B) is a Skew-symmetric matrix2 and ωAA/B ∈ Rn is the angular velocity vector

of {A} respect to {B}, expressed in {A}.

2A square matrix S is called a Skew-symmetric matrix iff ST = −S
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