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Abstract

This paper proposes a data-driven guidance strategy to tackle the target interception problem with terminal
time constraints. The developed guidance algorithm employs the prediction-correction concept to derive
commands effectively. We first develop a two-branch neural network to predict time-to-go, assuming there is
no constraints on target’s maneuvers. Using the predicted time-to-go, we then propose a biased proportional
navigation guidance (PNG), where the the biased command is computed by a deep reinforcement learning
(DRL) network, to correct the impact time. Results from intensive Monte-Carlo simulations validates the
efficacy of the method.

Keywords: Impact time guidance, Computational guidance, Maneuvering target, Deep reinforcement

learning

1. Introduction

Irecent years, the increasing defense capabilities of aircraft platforms brings challenges to the interception
of a target using a single interceptor. Consequently, there has been a growing research focus on cooperative
guidance for interceptors, particularly in the context of multi-missile salvo attack that introduces terminal
time constraints into guidance law design. The ability to control the exact time of impact allows forces to
synchronize attacks, even when deploying munitions from multiple platforms over varied distances. This
synchronization can maximize operational effectiveness, enabling simultaneous strikes that overwhelm enemy
defenses. Moreover, controlling the impact time aids in minimizing collateral damage by allowing munitions
to detonate at precise moments to achieve the intended tactical outcome while preserving surrounding
infrastructure and reducing non-combatant casualties. In general, there are two ways to implementing

impact time control in cooperative guidance strategies: controlling time-to-go individually through impact

*These authors contributed equally.
**Corresponding author
Email address: shaoming.he@bit.edu.cn (Shaoming He)

Preprint submitted to Aerospace Science and Technology May 30, 2024



time control guidance (ITCG) laws [11 2, B, 4, 5] 6] [7, 8], or receiving information from neighbor missiles to
regulate time-to-go cooperatively [9] 10} [IT].

The terminal time-constraint was first introduced into guidance laws in [I2], and later many different
approaches were reported on developing the ITCG laws. To achieve the desired impact time, the authors
in [13] designed a generalized ITCG based on PNG, where the impact time error feedback term in [I3] was
introduced to control the impact time. While earlier studies focused on intercepting stationary targets,
the work in [14] extended the ITCG law to the scenery of intercepting non-maneuvering targets. In the
interception of maneuvering targets, uncertainties in target behavior present significant challenges for the
derivation of ITCG. With constant speed assumption, a sliding-model control form ITCG law was proposed
based on the explicit time-to-go estimation for a deviated pursuit-guided interceptor [I5, 2]. To mitigate the
effect of varying speed, the authors in [16] 6] proposed to improve the impact time prediction by numerical
integration time at the price of increasing computational burden.

To diminish the impact of target uncertainty, several cooperative guidance methods utilize inter-missile
communication networks to incorporate the information of other interceptors. The work in [9] developed a
cooperative proportional guidance law to cooperatively intercept targets, when each missile could obtain the
time-to-go of all other missiles. Another cooperative guidance law discussed in [I0] required communication
networks between neighbor interceptors, which rely on the consistency theory. However, the utilization of
inter-missile communication networks may also lead to the emergence of new problems, such as network delay
and vulnerability, hence indicating the value of independent estimation of time-to-go by the interceptor.

Notice that the aforementioned analytical ITCG methods that rely on closed-form or numerical time-to-
go prediction may suffer from accuracy issues in two aspects. On one hand, both closed-form or numerical
time-to-go prediction approaches cannot consider unknown target maneuver and hence the accuracy might
degrade. On the other hand, analytical guidance law requires constant speed assumption in command
derivation, which cannot cater for fast-moving vehicles. With deep learning technology performing excel-
lently in numerous fields, researchers begin to investigate its application in guidance strategies to address
the challenges associated with analytic methods [I7} (18, 19, 20} 21]. Unlike analytical guidance laws, deep
learning techniques rely on data-driven approaches rather than principles of dynamics, allowing for the han-
dling of interception problems without significant simplification of dynamics. The work in [21] used deep
neural networks to improve prediction-correction guidance, resulting in a significant reduction of computing
power consumption. The problem of maneuvering penetration was modeled as a Markov decision process
(MDP) in [22] and employed the DRL to achieve model-free penetration. In a similar vein, the DRL was
utilized in [23] to optimize energy consumption and shorten interception time. Another approach proposed
in [24] used DRL to develop a guidance strategy that could intercept maneuvering targets using only angle
measurement information. The work in the previous work in [25] employed the proximal policy optimiza-
tion (PPO) algorithm to achieve maneuvering near-space target interception. Additionally, the authors in
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[26] designed a DRL strategy for defending an attacking missile, which makes decisions on the timing of
launching a defense missile and the maneuvering strategy of an evading target. In the context of ITCG,
deep learning can can be applied as a time-to-go predictor based on the prediction-correction framework
[27], and as a part of the ITCG law in guidance gain tuning [28]. However, current predictors lack the
ability to predict the time-to-go accurately for maneuvering targets due to the absence of target information
[27]. Moreover, although the strategy in [28] determined the parameters in the ITCG law using DRL, they
still used an analytical guidance law based on the constant speed assumption, and hence the performance
significantly degrades when considering aerodynamic forces.

Taking inspiration from previous research, this study introduces a computational impact-time-control
guidance (CITCG) algorithm for intercepting maneuvering targets in consideration varying-speed aerody-
namic models. Since impact time control guidance is a general control problem with terminal constraint,
one simple strategy of utilizing DRL to solve this kind of problem is to formulate a reward function that
gives positive value when the missile intercepts the target with desired terminal time and negative values if
it fails. However, the issue with this naive formulation is that the agent explores the action space randomly
during the training phase, resulting sparse reward of this problem since the probability of successfully inter-
cepting the target with specified impact time is very low under random guidance commands. This can be
also attributed to the fact that the reward function is formulated based on current state and cannot evaluate
the terminal state. Since reinforcement learning is known to be inefficient to cope with this type of problem
due to sparse reward [23], we develop a computational prediction-correction approach for guidance algo-
rithm design: this guidance algorithm employs DRL to generate guidance commands, and deep supervised
learning is utilized to predict the time-to-go necessary for generating the commands. Extensive numerical
simulations reveal that the proposed guidance algorithm is capable to satisfy the impact constraint with
different types of target maneuvers and significantly improves the interception performance compared to
conventional guidance laws.

The contributions of this paper are twofold. On one hand, a two-branch neural network is developed to
precisely predict the time-to-go of intercepting maneuvering targets by processing the state of interceptor
and the target trajectory sequence simultaneously. On the other hand, the impact time constraint is satisfied
through the model-free DRL with aerodynamic effect and target maneuver. Since the prediction considers
time-varying aerodynamics and infers the influence of target maneuver, the prediction can be significantly
improved compared with using constant-speed model and thereby helps to improve the impact time error.

The later sections of this paper are organized as follows: Section [2] proposes an overview of the back-
ground and preliminary information related to the proposed research. In section [3] the computational ITCG
algorithm proposed in this study is introduced, which includes the predictor that utilizes a two-branch neural
network and the corrector that employs PPO algorithm. Section [4] presents the numerical simulation results
and discussion. Finally, Section [f] provides the conclusion of this article.
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2. Backgrounds and preliminaries

We now present the interceptor-target engagement dynamics models and then state the main problem

addressed in the paper.

2.1. Nonlinear Mathematical Models

For simplicity, we consider a 2D interception scenario and the interceptor-target engagement geometry
in the vertical plane is depicted in Fig. The line of sight (LOS) angle and relative range are defined as
A and R, respectively. The subscript I denotes the interceptor, while the subscript T° denotes the target.
The interceptor’s flight path angle and speed are expressed by 6; and V;, and the gravity, lift, and drag
forces are expressed by Fg, FL, and Fp. The symbol Vp, 67, and ar stand for the target’s moving speed,

flight path angle, and maneuvering acceleration. Since we have no information on the target maneuver, we

Y F,
Fp
V Interceptor
ar \/O}R I
v}
S
Target Vr X

Figure 1: Interceptor-target engagement geometry.

suppose the target escapes at a constant speed, then the dynamics and kinematics of the engagement can

be described as in [29] as follows
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where the forces on the interceptor are given by

Fo=mg
Fr=CL@QS (2)
Fp =CpQS

where m and S are the mass and the reference area of the interceptor. Above, the symbol Cp, and Cp are
the lift and drag coefficients, respectively. The gravitational acceleration is denoted by notation g. The

symbol @ stands for the dynamic pressure that can be defined as

PV

Q:T (3)

where p represents the standard air density, which varies with respect to the height.
According to the relationship between aerodynamic coefficient and angle-of-attack (AOA), an approxi-

mation can be made as follows
Cr=Cla
Cp = Cpo + CHya?
where a denotes the AoA, and it is related to the interceptor acceleration ay by

mary

TS ®)

To achieve salvo interception, all interceptors are required to impact the target at the same time. We
use tq,tgo,ty to denote the desired interception time, time-to-go, and terminal time, respectively, and the
goal of impact time control is to adjust t; to be equal to tq. Since t; = t4, + ¢, the t; control problem can
be converted into tg, control problem. Also, we assume the moving speed of the missile is faster than that
of the target, i.e., V; > Vp, to make the ITCG solution feasible. To address this issue, we define the ITCG
problem as follows:

Problem 1: Given the target-intercepter engagement model described by Egs. —, design the lateral
acceleration command a; that ensures intercepting a maneuvering target at the desired interception time

tq.

2.2. Algorithm Qverview

Notice that designing guidance law for impact time is generally a control problem with hard terminal
constraint. To address this problem, we propose to leverage the prediction-correction concept to address the
impact time control problem. Specifically, a neural predictor is used to accurately estimate the remaining

interception time under PNG considering varying aerodynamics and unknown target maneuver. A DRL



corrector is developed to regulate the impact time error. Based on this concept, the command of the

proposed method is designed as a biased PNG, i.e.,
ar = ag + ap (6)

where ap is biased command for diminishing the impact time error, and ag is the PNG command with

gravity compensation term, which is given by [29)]
ap = 3ViA + gcos b (7)

The working principle of the proposed guidance algorithm is illustrated in Fig. |2 where the variable fgo
denotes the estimated time-to-go and e, = tq —t — fgo is the impact time error. In this work, we first propose
a predictor by a novel two-branch neural network, capable of inferring the unknown target maneuver by
processing the time-history data, to cater for maneuvering targets interception. The biased guidance term ay
is then generated by a computational DRL corrector to guide the missile reach the target at predetermined

intercept time. This biased command is learned by the widely-accepted PPO with properly designed reward

functions.
a r.o®
0 Proximal Policy Optimization
ar e
t + ttig
Interceptor Dynamics =_ tq
l i\go
Interceptor State Vector —»| Two-branch Neural Network < Target Trajectory Sequence

Figure 2: Closed-loop guidance system under the proposed guidance algorithm.

Remark 1. Notice that applying DRL in guidance law design with terminal constraint usually encounters
the issue of sparse reward since the possibility of generating the command, with randomly explored actions,
to intercept the target at a predetermined time constant is very low. To overcome this technical challenge,

we transform the terminal constraint into a state requlation problem by the prediction-correction concept.

3. Computational Terminal Time-Constrained Guidance Design

This section introduces a computational ITCG method against maneuvering targets. We first present
a two-branch neural network to predict tz,, and then introduce a DRL method to compute the biased

command ayp.



3.1. Predictor of Time-to-Go

Notice that accurate prediction of the time-to-go is important for impact time control and finding analytic
solution is generally intractable when considering aerodynamic effect and unknown target maneuver. To
simplify the problem, many existing works usually assume the heading angle is small, the interceptor is
constant-moving and the target is non-maneuvering to enable a closed-form ¢4, estimation [16]. However,
these assumptions might be violated for maneuvering target interception and hence result in decreased
performance. Generally, if the target maneuver is available, accurate time-to-go can be found by numerically
solving Eq. as

teo = f (V1,01, R, A\, ar) (8)

where the relative range R and LOS angle A are functions of the geometrical states as

R= /(X1 — Xr)* + (¥; — V7)?
s = Ve Y
Xr—Xr

Because numerically solving Eq. is computationally-expensive, we can leverage deep neural network
to learn the nonlinear mapping, as given in Eq. . However, the main challenge is that the target
maneuver is naturally unknown to the interceptor. To address this issue, we propose to indirectly infer
the target maneuver by using historical target trajectory data since the target trajectory is influenced by
its maneuvers. Then, the target maneuver at the kth time instant can be inferred using n consequential

time-history data as

ar = f (X1 k—nt1, YT h—n+1,  * » X7k, YT 1) (10)

where (X7, Yr,r) denotes the inertial position of the target at the kth time instant.
Also, we notice that the same target trajectory and relative engagement provide similar target maneuver
information, then all position information is shifted to a dynamic coordinate system with the target position

as the origin to infer the target maneuver as
ar = f (Xrp—ny1 — X7, Y knt1 — Y70, ,0,0) (11)

Since the relative range and bearing angle can be directly measured from the onboard seeker and the
position of the interceptor can also be obtained from the onboard sensor, the historical target trajectory
data (X7, Y7 1) is available to the interceptor. Consequently, nonlinear mapping, as shown in Eq. , can

be transformed into

teo = f (Vi i, 01,15 Ricy Ay Tke) (12)

where

Ty = {(X1k—nt+1 — X7ks YT k—nt1 — YT0)5 - - -, (0,0)} (13)
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Notice that Eq. contains both sequential and non-sequential inputs, directly stack these inputs
into a single vector and feed to a conventional deep neural network might result in the explosion of inputs.
To mitigate this issue and improve the training efficiency, we propose a novel two-branch neural network
architecture that effectively combines two neural networks into a unified network to learn the unknown
nonlinear mapping function represented by Eq. . The proposed network simultaneously processes both
sequential and non-sequential inputs and directly predicts t,, without relying on prior knowledge of the
target flight state. Furthermore, this network significantly reduces the training time by combining the

training process of two neural networks. The architecture of the two-branch neural network is presented in

Fig.
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Figure 3: The architecture of two-branch neural network.

The proposed neural network architecture comprises two input branches. The first branch, a multi-layer
perceptron (MLP), receives a vector containing information about the interceptor’s flight state and the
relative motion. The second branch, a gated recurrent unit (GRU), receives a sequence of historical target
positions sampled at intervals of 0.1 seconds. The intermediate vectors generated from the two branches
share the same shape. The addition of these two vectors produces a combined vector that is input into
an MLP, which then outputs the ¢4, estimation. The MLPs in the network consist of two fully-connected
hidden layers, each layer containing 100 neurons, while the GRU network comprises 10 cells, each with 100
neurons. The two-branch neural network is trained with data collected from Monte Carlo flight simulation

experiments using aerodynamic models. During the initialization of the simulation, the original position
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and velocity of the interceptor, as well as the maneuver acceleration and velocity of the target, are randomly
assigned. Once the sample acquisition is completed, the two-branch neural network is trained using the
collected data.

Assuming the network parameter is represented as (3, the conventional loss function is utilized in the

training process as
1 & 2
J(B) = Np Z (tgo.i = tgoi) (14)

where the network’s estimate of ¢4, is represented by ngo’i’ while ¢4, ; expresses the real ¢4, and Np denotes
the number of samples. The stochastic gradient descent algorithm is utilized to optimize the loss function.

The update formula for the network parameters can be expressed as follows:
Bnew = /Bold - aﬁvﬁJ (ﬁ) (15)
where ag represents the learning rate.

Remark 2. The authors in [30] derived the closed-form solution of time-to-go for PNG and the expression

is given b
g y . n ivr: (2i)! (16)
V& 2014 20(N - 1)) ()2

where the ideal analytic solution is achieved by setting M = oo, indicating that the accuracy of time-to-go
computation is improved as M increases in Eq. , especially when the lead angle o = 07 — X\ is big.
Although Eq. provides a closed-from time-to-go estimation under PNG, the main issue lies that the
derivation ignores the varying speed (i.e., no aerodynamic forces) and target maneuver. Hence, the predic-
tion accuracy will significantly degrade when considering realistic aerodynamic dynamics and maneuvering

targets, as illustrated in the simulation sections.

Remark 3. Compared with numerical impact time prediction proposed in [16, [G], the proposed neural pre-
diction is expected to improve the accuracy in two aspects. On the one hand, we leverage the time history
of the target measurable states to indirectly consider the target maneuver in the prediction process. On the
other hand, the proposed neural predictor can be easily implemented online once the network is properly

trained, whereas the numerical prediction requires more powerful computational resources.

3.2. Corrector of Impact Time Error

Once the estimation of the ¢4, is accomplished, the next step is to design the guidance command to
regulating the ¢4, error. Since the dynamics of the learning-based ¢, estimation is unknown, deriving the
analytical form of ITCG laws is intractable. To this end, this paper proposes a computational guidance

command that is based on a state-of-the-art DRL algorithm, called PPO. In the reinforcement learning



paradigm, the controller is regarded as an agent, and the controlled object as the environment, where the
agent receives observations from the environment, interacts with it by taking actions, and receives rewards.
By maximizing the cumulative reward under the present observation, the agent learns to optimize its behavior
through trial and error. The PPO algorithm employs two neural networks: an actor network, which outputs
guidance commands based on the input observations, and a critic network, which evaluates the quality of

these commands.

3.2.1. Reinforcement Learning Formulation of the ITCG Problem

The problem of DRL is commonly formulated as a MDP, which can be described as a tuple consisting of
several sets: states S, observations O, actions A, state transition probabilities P, and rewards R. At time
t, the environment is in state s;, the agent obtains observation o; from the internal state s;, takes action a;,
and the environment transits to state s;y; according to the state transition probabilities P and provides a
reward r;. Prior to applying reinforcement learning to solve the ITCG problem, the observation O, action
A, and reward R need to be designed. Obviously, the action can be determined as the bias command ay.
During the trial-and-error training stage, the bias command may become excessively large, and hence it
needs to be clipped as

at = Qp, Hab” < Amax (17)

where apyax represents the limit value of the bias command.
The observation can be designed as a vector consisting of flight speed and impact time error, as larger

errors in impact time and higher speed require larger a;. Therefore, we have
0t = (kVVI, keet) (18)

where ky and k. are the scaling factors to transform the observation elements into similar scales.

The reward function plays a major role in determining the efficacy and convergence of the reinforcement
learning process. In this context, we have considered several factors, such as impact time error, energy
consumption, speed, and altitude in designing the reward function for reinforcement learning. Recent
research suggested the optimal error dynamics for general guidance law design [31], represented as

g+ iet =0 (19)
teo
where k£ > 0 is a design parameter to adjust the convergence speed of &;.

It has been shown in [31] that if the error satisfies the optimal error dynamics given by Eq. , the

error will converge to zero once the target position is reached. Inspired by this fact, we propose the following

reward function for ¢; as

r; = 67(%)2 (20)



which indicates that when the DRL tries to maximize the reward, more penalty is posed on the impact error
as tyo — 0. This helps to gradually reduce the impact time error when the missile is close to the target.

In missile guidance, the energy consumption, i.e., integral of the square of the acceleration fttof aldt, is
an important factor since it is directly related to the induced drag. Hence, minimizing the square of the
lateral acceleration is helpful to minimize the velocity loss. Notice that the evaluation of the potential value
of observations involves the integration of the rewards, the effect of energy consumption can be considered
in reward design as

2

Te = e % (21)

Speed is also an important factor to consider when designing the reward function. In particular, addi-
tional maneuvers could cause a loss of speed, which might result in an extended ¢4, and ultimately, missing
tq. Moreover, a decrease in speed could decrease the likelihood of interception. To overcome this issue, we

propose the reward term for speed in the following form
ry =e kvVi (22)

where ky is the scaling factor, which has the same value as in Eq. .
Finally, excessive loss of altitude during maneuvers could result in an increased atmospheric density at
low altitude, further accelerating the loss of flight speed. To mitigate this issue, we design the reward term

to minimize the loss of altitude during maneuvers as
ry = e Py (Y1=E) (23)

where ky is the altitude scaling factor.

After summing the weighted reward functions, the reward function that considers all factors is shown as

Ty = 017 + OoTe + 037y + 04Ty — [|Rf| + (ta — tf)z} (24)

where 01, 02,03 and o4 are weight coefficients of the rewards. The symbol R¢ represents the terminal miss
distance between the missile and the target. Note that the term [|Rf| + (ta — tf)z] in the reward function

is utilized to improve the guidance accuracy.

3.2.2. Prozimal Policy Optimization Algorithm

Reinforcement learning aims to enable artificial agents to make a sequence of decisions within a given
environment, with the ultimate goal of maximizing a cumulative reward, which is the accumulation of
rewards obtained by the agent over time. To achieve this, the PPO algorithm was introduced by OpenAl
[32, B3], which is an RL technique that uses an actor-critic architecture for policy learning. The structure

of typical PPO is illustrated in Fig.
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Figure 4: The information flow of PPO.

In the PPO, the actor network plays an essential role in the selection of actions. The actor network
takes o; as input, outputs a probability distribution of actions, commonly referred to as the policy 7(at|oz).
Subsequently, 7(a¢|o:) is sampled to determine the actual action that the agent will take. The actor network
in the PPO is often combined with a critic network, which estimates the value function v.(o;) of each
observation. The critic network serves as a vital component of the actor-critic architecture by providing
a baseline for the advantage function and reducing the variance of the policy gradients. The advantage
function A, is a metric that quantifies the gap between the estimated value of a state and the expected
value if a specific action is taken, enabling the PPO algorithm to update the actor network accordingly.
To train the agent, the PPO relies on the samples generated through the interaction between agent and
environment. As an on-policy algorithm, the PPO requires that the policy employed to generate samples
be consistent with the recently updated policy of the agent. When training the PPO, the agent utilizes the
old policy moa(a¢ot) to interact with the environment N times and subsequently calculates flng) using the

generalized advantage estimator

N—-1
AN =37 9160,, 67 = —ve(00) + 1o+ 70 (0011) (25)
=0

where 07 is the temporal difference residual, which represents the gap between the actual value and the pre-
dicted value of a state. The discount factor v € (0, 1] serves as a parameter that determines the significance
of immediate versus future rewards in the decision-making process of the agent.

At this point, the critic network can be trained using the loss function determined by

1 N
J(€) = NZ 147 (o, @) (26)

where the parameters of the critic network are represented by &.

Due to the lack of knowledge about the optimal action sequence, it is difficult to calculate the error
between optimal action and executed action to construct a loss function for the action network. As a
solution, the advantage function is employed to calculate the advantage of a given action over the average
action that can be taken from a given state. The surrogate loss, which quantifies the amount of policy change
in each iteration of the algorithm, is then calculated using the advantage function. To improve the policy
while not diverging too much from the previous policy, a clip function is introduced to impose a constraint

12



on how much the policy can change in each iteration, which is controlled by a hyperparameter called the
clipping parameter. In summary, the loss function in training the actor network can be determined as

N
1 . .

J(B) = N Z [min(c¢(8)Ar, clip(ct(B), co) Ax)] (27)
t=1

where ¢y is the clipping parameter, 8 represents the parameters of the actor network, ¢;(3) is the ratio

function to measure the magnitude of policy updates during the training session. The clip function and

the ratio function are determined by

I—cy, c(B)<1—cy
clip(ry(B),co) = ¢ 14cy, c(B)>1+cy (28)
ct(B8), others

Tnew (Gt | 0f)
Told (at \ Ot)

With the objective functions, shown in Egs. and , the network parameters £ and ( are then

ct(B) = (29)

updated by the stochastic gradient descent (SGD) optimizer. The update formula can be expressed as

follows:

Enew = Eold — OégvgJ (f) (30)
ﬁnew = Bold - QBVBJ (ﬁ) (31)

where a¢ and ag are positive learning rates.

Remark 4. Notice that the leveraging DRL to generate the biased guidance command is a kind of ‘blackbox’
algorithm that provides no closed-form solution and hence it is difficult to directly analyze the characteristics
and performance as conventional guidance laws. However, it has been theoretically proven in [3])] that PPO
provides convergence to the local minima under some mild assumptions. This indicates that the convergence

of the developed learning-type guidance algorithm to the optimal solution can be theoretically ensured.

Remark 5. Unlike the original PPO algorithm, we employ a deep neural network to evaluate the terminal
state in the actor network and this strategy helps to transform the original problem with terminal constraint
into a state regulating problem. Therefore, we can directly design a proper reward function to minimize the

state regulation error and resolve the typical sparse reward issue.

4. Simulation Results

We conduct simulation experiments in the longitudinal plane to evaluate the performance of the computa-
tional terminal time-constrained guidance algorithm. First, the accuracy of the ¢, predictor is investigated.
Second, the efficacy of the PPO-based corrector is evaluated via a series of simulation experiments. Finally,
Monte Carlo simulations are executed to perform statistical analysis of the impact time errors.
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4.1. Performance of Predictor

Proper training of the predictor is essential prior to its application. To this end, numerous simulations
with an interceptor attacking a maneuvering target under PNG are conducted to generate the training
samples for the predictor. The initial values of the target and the interceptor are given in Table [I, which
encompass the initial position, speed, flight path angle, and maneuver amplitude. The aerodynamic charac-
teristics of the interceptor are summarized in Table 2| for specific certain Mach numbers, and the first-order
interpolation is utilized to obtain the aerodynamic coefficients at other Mach numbers. It should be noted
that we suppose the target escapes at a constant speed and thus do not consider the aerodynamic force on

the target. The gravitational acceleration is 9.81m/ .

Table 1: The initial values of the target and the interceptor.

Variable Definition Interval or Value Units
Xéo) Initial target position in z—axis 0 km
YT(O) Initial target position in y—axis ) km
V}O) Initial target speed (100, 200) m/s
0&9 ) Initial flight path angle of the target (0, 90) °
ag) ) Initial maneuver of the target (-2, 2) g
X;O) Initial interceptor position in z—axis (0, 20) km
YI(O) Initial interceptor position in y—axis (10, 30) km
v\ Initial velocity of the interceptor (400, 500) m/s
(950) Initial flight path angle of the interceptor 180 °

m The mass of the interceptor 200 kg
S The reference area of the interceptor 0.0572556 m?2

We collect 30,000 trajectories, including 7,500,000 samples for training the predictor. Each sample is
composed of the input (Vr,0;, X; — Xp,Yr — Yy, R, A\, T}) and output 4, pair of the network. These samples
are categorized into two sets: the training set, which comprises 80% of the samples, and the validation set,
which includes the remaining 20%, using the 80/20 rule. The learning rate ag is set to be 0.001.

We first evaluate the performance of the predictor and compare with analytic solution through a
single experiment. The initial values are set as X}O) = 20km, YI(O) = 20km, VI(O) = 400m/s, 9&0) = —150°
or —225° X(TO) = Okm, ngo) = bkm, VT(O) = 100m/s, 9§0) = 0°, and ag)) = 0.5g. The scenario with
9§U) = 210° corresponds to small initial lead angle 0(®) ~ —7° while 9§0) = 135° corresponds to large initial
lead angle o(©) &~ —82°. Notice that the proposed predictor is trained using samples drawn from Table
and the scenarios 9&0) = —150° or —225° are not included in the training set. Hence, we can evaluate the

generalization performance by using these two test scenarios. The predictor is then employed to generate
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Table 2: Aerodynamic model in the considered scenario.

Mach Number C$/rad™*  Cpy  C% /rad=2

0.4 39.056 0.4604 39.072
0.6 39.468 0.4635 39.242
0.8 40.801 0.4682 40.351
0.9 41.372 0.4776 41.735
1.0 41.878 0.4804 43.014
1.1 42.468 0.4797 42.801
1.2 41.531 0.4784 42.656
1.3 41.224 0.4771 42.593
14 40.732 0.4768 42.442
1.5 40.321 0.4761 42.218
1.6 40.033 0.4756 42.034
1.7 39.912 0.4751 41.977
1.8 39.756 0.4748 41.893
1.9 39.501 0.4743 41.808
2.0 39.344 0.4739 41.754
60 80

= = .True value

—e— T'wo-branch predictor
-+ Eq. (16) with M=1
-4 -Eq. (16) with M=3
—eo—Eq. (16) with M=5
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- ¢ -Eq. (16) with M=3 60 1
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Figure 5: Time-to-go estimate comparisons.

real-time estimations of fgo, and the actual ¢4,. The results are presented in Fig. [5) which reveals that the
estimated values and actual values almost completely overlap in the graph, suggesting excellent performance

by the predictor. It is observed that the initial phase of the trajectory exhibits substantial errors, but as
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Table 3: Statistical comparison of time-to-go prediction errors.

Algorithm RMSE Mean Maximum
1.037  0.653 4.441
6.018  4.320 11.736
6.023 4.324 11.742
6.023  4.324 11.742

the interceptor approaches the target, the prediction error gradually diminishes. The results also indicate
that the analytic solution cannot provide accurate time-to-go estimation in realistic scenarios. Even by
increasing the order n we cannot improve the estimation performance. The reason behind is that the analytic
solution is derived based on non-maneuvering target and hence the estimation performance will degrade if
target performs unknown maneuvers. We then assess the statistic performance of the predictor using the test
set as shown in Table [3] which clearly indicates that the proposed predictor provides significantly improved

performance as the analytical solution.

4.2. Performance of Corrector

The scenarios for training PPO utilized the same initial values as described in Table [I] In each episode,
tq is set as the initial predicted terminal time plus a time randomly chosen between 5s and 10s. The
hyperparameters used in the PPO training are presented in Table[d It is noteworthy that the effect of PPO
is impacted by the tuning of hyperparameters. Thus we conducted several trial and error tests to fine-tune
these hyperparameters for our guidance problem. After running the training process of the PPO algorithm
for 150 episodes, it is observed that the reward value reached a state of stabilization. In order to calculate
the average reward of multiple flight experiments, a sliding window average is employed. The learning curve
during the PPO training process is illustrated in Fig. [6] The figure depicts that the proposed corrector
achieves a stabilized average reward within just 100 episodes.

To evaluate robustness of the corrector, we conduct a series of simulations across various scenarios. The
initial flight states are determined as following:

X1 = 20km, ¥” = 20km, V¥ = 400m/s, 8" = 210°, .
X3 = 0km, V¥ = 5km, V") = 100m/s, 65 = 0° .

In Fig. m the results of simulations involving interception trajectory, tg, history, moving speed, and
guidance command are presented for the proposed corrector using a target maneuver amplitude of 0.5g and
varying desired impact times of tq = 50s, 55s, 60s. In Fig. (a), the dotted line represents the target
trajectory and the dashed line stands for the interceptor’s trajectory (we will also use the same trajectory
line types in the following simulations). The results demonstrate that the computational ITCG algorithm
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Table 4: Hyperparameters in the PPO training.

Hyperparameter Definition Value
Cy Ratio clipping 0.2
ag Actor learning rate 0.0001
o Critic learning rate 0.0002
0 Discounting factor 0.99
N Size of the experience buffer 32
kv The scaling factor of V; 0.01
ke The scaling factor of ; 1
ky The scaling factor of Y; 0.001
o1 The weight of r; 0.8
09 The weight of r, 0.1
o3 The weight of ry 0.05
o4 The weight of ry 0.05
50
0 = 7
-50 ]
<
&
& -100 :
3
ol
-150 ]
i
-200 | I Episode Reward |
: — Average Reward
-250
0 50 100 150
Episode

Figure 6: The Learning curve of the corrector.

proposed in this paper could accomplish intercepting a maneuvering target at the desired time. We can
also note from the figure that the velocity loss increases with bigger discrepancy between the desired impact
time and the predicted terminal time. The reason is that by increasing the desired impact time, the missile
needs to maneuver more to adjust the trajectory and hence consumes more energy.

To investigate the effects of target maneuvers on the performance of the corrector, we conduct two sets of
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Figure 7: Simulation result of intercepting maneuvering target at different 4.

experiments with £y = 60s. The initial values are the same as Eq. . The first set compares the guidance
performance of targets with different maneuvering accelerations, namely Og, 0.5g, 1g. As illustrated in Fig.
[8] the interceptor successfully achieves the desired impact time for different target maneuvering accelerations.
In the second set of experiments, we compare the interception with various maneuver forms, namely constant,
square-wave, and sinusoidal maneuvers, where the square-wave and sinusoidal maneuvers have a time period
of 40s. As shown in Fig. [0] the interceptor successfully intercepts targets with different maneuver forms.
It is worth noting that the predictor’s accuracy for the weaving maneuver decreases due to the use of a
constant maneuver during the collection of the training set samples. However, as the target’s feasible region
and the variability gradually decrease when the interceptor closes in the target, the prediction error of ¢4,

gradually converges, allowing the interceptor to successfully attack the target at 4.
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Figure 8: Simulation result of intercepting maneuvering target with different a.

4.8. Monte-Carlo Analysis

This section presents results obtained from a Monte-Carlo simulation campaign to assess the performance
of the computational ITCG method across a range of scenarios. We use uniformly distributions to sample
the initial conditions and ranges of the initial conditions in the sampling is the same as shown in Table
The results of these simulations, including the interception trajectory, the error of interception time, moving
speed, and guidance command, are presented in Fig. where we utilize black dotted line to plot the
trajectory of the target and color solid line to plot the trajectory of the interceptor. It is evident from the
figure that the interceptor could successfully hit the target in all scenarios, and errors of impact time are

evenly distributed around zero. Although a few errors are observed to be close to 3s, the majority of errors
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Figure 9: Simulation result of intercepting maneuvering target with different form of target maneuver.

were within 1s. Consequently, the proposed ITCG algorithm provides good performance across different

scenarios is verified by the Monte Carlo simulations.

4.4. Comparison with Analytical Guidance Laws

To further show the advantages of the proposed algorithm, this subsection reports simulation results,

in comparison with existing ITCG laws [7, [6]. Notice that both guidance laws are developed based on

the biased PNG using the prediction-correction concept. Hence, they share similar characteristics as the

proposed algorithm. The command of ITCG1 proposed in [7] is given by

K(2N — 1)V?
AEN-DW

= NV;\
“ It Rotgy,
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Figure 10: Monte-Carlo simulation of intercepting maneuvering target.

where N > 0 and K > 0 are guidance gains which can be tuned.

The analytic ITCG2 law suggested in [6] improves the performance by using a varying gain as

. K@2N-1)V?
ar = N(o)ViA+ (RTQO)VI& (34)
where
N(o) = (2N —1)(1 —cosa) ocosa 35)

osino 2sino

The impact time error &; in commands and are obtained using Eq. with M = 1. The
guidance gains in guidance commands and are chosen as N = 4 and K = 6. To better compare

the performance, we run 100 Monte Carlo simulations of two analytical guidance methods. As shown in
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Figs. and under some initial conditions, the analytical guidance laws fail to hit the target, resulting
in large terminal errors. The statistics show that ITCG1 generates 32 times of off-target and ITCG2 miss
the target 27 times. Figure [I3]shows the comparison when all analytical guidances can intercept the target
with acceptable miss distance under certain initial condition. We find that the guidance commands of the
analytical guidance laws diverge at the time of impact, and the final velocity of the proposed CITCG is
significantly larger than the other two. Further statistics of the terminal errors of CITCG, ITCG1 and
ITCG2 are shown in Table [5l Notice that only the terminal errors when all can hit the target are counted
since excessive errors when missing the target will cause excessive deviations of the statistics. It can be seen
that the errors of CITCG are smaller than the analytical guidance laws since the time-varying aerodynamic

forces and unknown target maneuvers are taken into account.
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Figure 11: Monte-Carlo simulation of ITCGI1.
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Figure 12: Monte-Carlo simulation of ITCG2.

Table 5: Comparison of terminal errors with analytical ITCG Laws

CITCG ITCG1 ITCG2
Mean Maximum Median Mean Maximum Median Mean Maximum Median
Az(m) 0.9411 3.2073 0.7909 1.3724 4.6074 0.9236 1.3153 4.2636 0.9149
Ay(m) 1.0317 1.4043 1.2527  1.7029 4.8252 1.2400 1.6036 4.0965 1.1334
At(s) 0.1685 2.1001 0.2300 2.0262 4.8700 2.0900 1.9541 4.9600 1.6500
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Figure 13: Comparison with analytic ITCG laws.

5. Conclusion

In this study, a novel computational guidance algorithm for controlling impact time against a maneuver-
ing target is introduced. A new architecture called two-branch neural networks is proposed to process the
interceptor’s state vector and the target’s trajectory sequence, leading to improved time-to-go prediction
accuracy with time-varying speed models. Additionally, a biased command using reinforcement learning
techniques is proposed to nullify the the impact time error. Numerical simulations of various desired impact
times and target maneuvers indicate that the proposed computation ITCG algorithm demonstrates promis-
ing performance in implementation. Future works include extending the proposed algorithm to 3D scenarios

and considering measurement uncertainties in performance evaluation.
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